Clinical Trials MCP Agent
Enables AI agents to search and analyze clinical trial data from ClinicalTrials.gov using both structured SQL queries for filtering trials by status, phase, and conditions, and semantic vector search for exploring detailed protocol information like exclusion criteria.
README
Enterprise Clinical Trials Agent (MCP Architecture)
This project implements a robust Retrieval-Augmented Generation (RAG) agent using the Model Context Protocol (MCP) standard. It acts as an integration middleware that fetches real-world clinical data, stores it in hybrid databases (SQL + Vector), and exposes it to LLM clients for autonomous reasoning.
🚀 Key Features
- REST API Integration: Implements a custom ETL pipeline (
etl_pipeline.py) that consumes the ClinicalTrials.gov API with pagination and error handling. - Hybrid Data Architecture:
- Structured (SQL): Uses SQLite for high-precision filtering (Trial Status, Phase, Conditions).
- Unstructured (Vector DB): Uses ChromaDB with
sentence-transformersfor semantic search within medical protocols.
- MCP Server: A centralized integration server (
mcp_server.py) that standardizes tools for any AI client (Claude Desktop, Cursor, IDEs).
📸 Autonomous Agent Demo
1. Backend Verification (MCP Inspector)
The server exposes structured SQL tools and Vector RAG tools via standard JSON-RPC.

2. Structured Reasoning (SQL Tool)
User asks for "Diabetes trials". The Agent autonomously selects the SQL tool to filter by disease.

3. Semantic Reasoning (RAG Tool)
User asks for specific "kidney function exclusion criteria". The Agent switches tools to perform vector search on the protocol text.

🛠️ Installation
-
Clone the repository:
git clone https://github.com/tonih23/clinical-trials-mcp-agent.git
cd clinical-trials-mcp-agent -
Set up the environment:
python -m venv venv
Windows:
venv\Scripts\activate
Mac/Linux:
source venv/bin/activate
pip install -r requirements.txt
🔄 Usage Workflow
1. Data Ingestion (ETL)
Run the pipeline to fetch live data from the API and populate local databases. This demonstrates the REST integration pattern:
python etl_pipeline.py
This will fetch the latest trials related to Oncology, Cardiology, and Diabetes.
2. Run the MCP Server (Dev Mode)
Start the integration server to test connections:
mcp dev mcp_server.py
3. Connect to LLM Client (Production-like)
To use this with an MCP-compliant client (like Claude Desktop), add this configuration to your claude_desktop_config.json:
Note: Replace the path below with the absolute path to your project folder.
On Windows, use double backslashes (\\).
{
"mcpServers": {
"clinical-agent": {
"command": "python",
"args": ["C:\\Users\\YOUR_USER\\Desktop\\clinical-trials-mcp-agent\\mcp_server.py"]
}
}
}
🧠 Example Queries
Once connected, the Agent can perform autonomous tool calling:
Structured Query (SQL)
"Find active Phase 3 trials for Diabetes."
(The LLM will automatically route this to search_trials_sql.)
Semantic Query (RAG)
"For trial NCT00528879, what are the specific exclusion criteria regarding kidney function?"
(The LLM will automatically route this to get_protocol_details_rag.)
Developed as a Proof of Concept for Enterprise AI Integration.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。