Cloud Run MCP Server
A secure MCP server example that demonstrates how to deploy to Google Cloud Run with authentication and identity token protection. Serves as a tutorial template for building production-ready MCP servers in the cloud.
README
mcp-server-cloud-run
An example MCP server deployable to Cloud Run that is secured by authentication and requires an identity token to access.
Full Codelab tutorial available here: https://codelabs.developers.google.com/codelabs/cloud-run/how-to-deploy-a-secure-mcp-server-on-cloud-run
To run this example
Install dependencies
From the project root directory run the following command:
uv sync
Authenticate gcloud CLI
Authenticate the gcloud CLI using the following command:
gcloud auth application-default login
This will trigger an OAuth 2.0 flow and will prompt you to login to your Google account. Log in to your account using your credentials then return to your terminal once completed.
Deploy MCP server to Cloud Run
Set the environment variables related to your GCP project in the set_env.sh script. From the shell terminal run the following to source its variables:
chmod +x set_env.sh
source set_env.sh
Run the following command to deploy the MCP server to Cloud Run:
gcloud run deploy zoo-mcp-server \
--no-allow-unauthenticated \
--project=$GOOGLE_CLOUD_PROJECT \
--region=$GOOGLE_CLOUD_LOCATION \
--source=. \
--labels=demo=mcp-server-cloud-run
Bind Cloud Run: Invoker role to end user account
The --no-allow-unauthenticated flag of the Cloud Run deployment command secures the MCP server by requiring an Authorization header with a valid Bearer <token> is presented to the server to allow traffic through.
Run the following command to give your user account permissions to invoke the MCP server on Cloud Run.
gcloud projects add-iam-policy-binding $GOOGLE_CLOUD_PROJECT \
--member=user:$(gcloud config get-value account) \
--role='roles/run.invoker'
Save your Google Cloud credentials and project number in environment variables for use in the Gemini CLI tool.
export PROJECT_NUMBER=$(gcloud projects describe $GOOGLE_CLOUD_PROJECT --format="value(projectNumber)")
export ID_TOKEN=$(gcloud auth print-identity-token)
You may need to re-run the command to export an ID_TOKEN if the token timteout expires.
Use an MCP Client to use tools on the MCP Server
To test the MCP Server and its authentication requirement, you will need an MCP Client.
To quickly test this setup, you can use the Gemini CLI. To install it you can run the following command from your shell:
npm install -g @google/gemini-cli@latest
This will install the latest Gemini CLI and requires having node package manager (npm) installed.
Configure Gemini CLI settings.json file
To tell the Gemini CLI to use your Cloud Run MCP Server with required Authentication parameters:
Open your Gemini CLI settings file:
vi ~/.gemini/settings.json
Add the zoo-remote server to the list of mcpServers available. Replace the PROJECT_NUMBER and GOOGLE_CLOUD_LOCATION with the settings for your project (if this is your first one, you can copy the settings below).
{
"mcpServers": {
"zoo-remote": {
"httpUrl": "https://zoo-mcp-server-$PROJECT_NUMBER.$GOOGLE_CLOUD_LOCATION.run.app/mcp/",
"headers": {
"Authorization": "Bearer $ID_TOKEN"
}
}
},
"selectedAuthType": "cloud-shell",
"hasSeenIdeIntegrationNudge": true
}
To retrieve a new token and update your settings file you can run the script update_token.sh to insert the updated token into the MCP server settings.
Use one of the MCP Server's tools
Start the Gemini CLI from your shell:
gemini
List MCP tools available to the Gemini CLI (MCP Client):
/mcp
Ask gemini to find something in the zoo:
Where can I find walruses?
You may need to tell the Gemini CLI to allow execution of the MCP tool running on the remote server.
The output should indicate that an MCP server tool defined in server.py was used.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。