
Cloud Vision API MCP Server
An MCP (Multi-Agent Conversation Protocol) Server that provides a standardized interface for interacting with Google's Cloud Vision API, enabling AI agents to analyze images and extract visual information through natural language.
README
MCP Server
This project is an MCP (Multi-Agent Conversation Protocol) Server for the given OpenAPI URL - https://api.apis.guru/v2/specs/googleapis.com/vision/v1p1beta1/openapi.json, auto-generated using AG2's MCP builder.
Prerequisites
- Python 3.9+
- pip and uv
Installation
- Clone the repository:
git clone <repository-url> cd mcp-server
- Install dependencies:
The .devcontainer/setup.sh script handles installing dependencies using
pip install -e ".[dev]"
. If you are not using the dev container, you can run this command manually.
Alternatively, you can usepip install -e ".[dev]"
uv
:uv pip install --editable ".[dev]"
Development
This project uses ruff
for linting and formatting, mypy
for static type checking, and pytest
for testing.
Linting and Formatting
To check for linting issues:
ruff check
To format the code:
ruff format
These commands are also available via the scripts/lint.sh script.
Static Analysis
To run static analysis (mypy, bandit, semgrep):
./scripts/static-analysis.sh
This script is also configured as a pre-commit hook in .pre-commit-config.yaml.
Running Tests
To run tests with coverage:
./scripts/test.sh
This will run pytest and generate a coverage report. For a combined report and cleanup, you can use:
./scripts/test-cov.sh
Pre-commit Hooks
This project uses pre-commit hooks defined in .pre-commit-config.yaml. To install the hooks:
pre-commit install
The hooks will run automatically before each commit.
Running the Server
The MCP server can be started using the mcp_server/main.py script. It supports different transport modes (e.g., stdio
, sse
).
To start the server (e.g., in stdio mode):
python mcp_server/main.py stdio
The server can be configured using environment variables:
CONFIG_PATH
: Path to a JSON configuration file (e.g., mcp_server/mcp_config.json).CONFIG
: A JSON string containing the configuration.SECURITY
: Environment variables for security parameters (e.g., API keys).
Refer to the if __name__ == "__main__":
block in mcp_server/main.py for details on how these are loaded.
The tests/test_mcp_server.py file demonstrates how to start and interact with the server programmatically for testing.
Building and Publishing
This project uses Hatch for building and publishing. To build the project:
hatch build
To publish the project:
hatch publish
These commands are also available via the scripts/publish.sh script.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。