Cloudflare MCP
Enables interaction with the complete Cloudflare API using a codemode pattern that allows agents to search the OpenAPI spec and execute API calls via JavaScript. This approach minimizes token usage by keeping the massive specification on the server and only returning relevant results.
README
cloudflare-mcp
A smol MCP server for the complete Cloudflare API.
Uses codemode to avoid dumping too much context to your agent.
The Problem
The Cloudflare OpenAPI spec is 2.3 million tokens in JSON format. Even compressed to TypeScript endpoint summaries, it's still ~50k tokens. Traditional MCP servers that expose every endpoint as a tool, or include the full spec in tool descriptions, leak this entire context to the main agent on every request.
This server solves the problem by using code execution in a codemode pattern - the spec lives on the server, and only the results of queries are returned to the agent.
Tools
Two tools where the agent writes code to search the spec and execute API calls. Akin to ACI.dev's MCP server but with added codemode.
| Tool | Description |
|---|---|
search |
Write JavaScript to query spec.paths and find endpoints |
execute |
Write JavaScript to call cloudflare.request() with the discovered endpoints |
Token usage: Only search results and API responses are returned. The 6MB spec stays on the server.
Agent MCP Server
│ │
├──search({code: "..."})───────►│ Execute code against spec.json
│◄──[matching endpoints]────────│
│ │
├──execute({code: "..."})──────►│ Execute code against Cloudflare API
│◄──[API response]──────────────│
Setup
Create API Token
Create a Cloudflare API token with the permissions you need.
Add to Claude Code
export CLOUDFLARE_API_TOKEN="your-token-here"
claude mcp add --transport http cloudflare-api https://cloudflare-mcp.mattzcarey.workers.dev/mcp \
--header "Authorization: Bearer $CLOUDFLARE_API_TOKEN"
Usage
// 1. Search for endpoints
search({
code: `async () => {
const results = [];
for (const [path, methods] of Object.entries(spec.paths)) {
for (const [method, op] of Object.entries(methods)) {
if (op.tags?.some(t => t.toLowerCase() === 'workers')) {
results.push({ method: method.toUpperCase(), path, summary: op.summary });
}
}
}
return results;
}`,
});
// 2. Execute API call
execute({
code: `async () => {
const response = await cloudflare.request({
method: "GET",
path: \`/accounts/\${accountId}/workers/scripts\`
});
return response.result;
}`,
account_id: "your-account-id",
});
Token Comparison
| Content | Tokens |
|---|---|
| Full OpenAPI spec (JSON) | ~2,352,000 |
| Endpoint summary (TypeScript) | ~43,000 |
| Typical search result | ~500 |
| API response | varies |
Architecture
src/
├── index.ts # MCP server entry point
├── server.ts # Search + Execute tools
├── executor.ts # Isolated worker code execution
├── truncate.ts # Response truncation (10k token limit)
└── data/
├── types.generated.ts # Generated endpoint types
├── spec.json # OpenAPI spec for search
└── products.ts # Product list
Code execution uses Cloudflare's Worker Loader API to run generated code in isolated workers, following the codemode pattern.
Development
npm i
npm run deploy
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。