Cloudscape Docs MCP Server

Cloudscape Docs MCP Server

Provides semantic search over AWS Cloudscape Design System documentation using natural language queries, enabling AI assistants to efficiently find and retrieve component documentation with token-efficient responses.

Category
访问服务器

README

Cloudscape Docs MCP Server

A Model Context Protocol (MCP) server that provides semantic search over AWS Cloudscape Design System documentation. Built for AI agents and coding assistants to efficiently query component documentation.

Features

  • Semantic Search - Find relevant documentation using natural language queries powered by Jina Code Embeddings 0.5B model
  • Token Efficient - Returns concise file lists first, full content on demand
  • Hardware Optimized - Automatic detection of Apple Silicon (MPS), CUDA, or CPU
  • Local Vector Store - Uses LanceDB for fast, file-based vector search

Transport

This server uses the MCP stdio transport protocol.
Streamable HTTP transport coming soon.

Tools

Tool Description
cloudscape_search_docs Search the documentation index. Returns top 5 relevant files with titles and paths.
cloudscape_read_doc Read the full content of a specific documentation file.

Cloudscape Docs MCP Tools in Action


Requirements

  • Python 3.13+
  • ~3GB disk space for the embedding model
  • 8GB+ RAM recommended

Installation

# Clone the repository
git clone https://github.com/praveenc/cloudscape-docs-mcp.git
cd cloudscape-docs-mcp

# Create virtual environment and install dependencies
uv sync

# Or with pip
pip install -e .

Setup

1. Add Documentation

Place your Cloudscape documentation files in the docs/ directory. Supported formats:

  • .md (Markdown)
  • .txt (Plain text)
  • .tsx / .ts (TypeScript/React)

2. Build the Index

Run the ingestion script to create the vector database:

uv run ingest.py

This will:

  • Scan all files in docs/
  • Chunk content into ~2000 character segments
  • Generate embeddings using Jina Code Embeddings 0.5B embedding model
  • Store vectors in data/lancedb/

Note: Running uv run ingest.py multiple times is safe but performs a full re-index each time. The script uses mode="overwrite" which drops and recreates the database table. There is no incremental update or change detection—all documents are re-scanned and re-embedded on every run. This is idempotent (same docs produce the same result) but computationally expensive for large documentation sets.

3. Run the Server

uv run server.py

MCP Client Configuration

Claude Desktop

Add to your mcp.json:

{
  "mcpServers": {
    "cloudscape-docs": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/cloudscape-docs-mcp", "python", "server.py"]
    }
  }
}

Cursor / VS Code / Windsurf / Kiro

Add to your MCP settings:

{
  "cloudscape-docs": {
    "command": "uv",
    "args": ["run", "--directory", "/path/to/cloudscape-docs-mcp", "python", "server.py"]
  }
}

Zed

Add to your Zed settings (settings.json):

{
  "context_servers": {
    "cloudscape-docs": {
      "command": {
        "path": "uv",
        "args": ["run", "--directory", "/path/to/cloudscape-docs-mcp", "python", "server.py"]
      }
    }
  }
}

Usage Example

Once connected, an AI assistant can:

  1. Search for components:

    User: "How do I use the Table component with sorting?"
    Agent: [calls cloudscape_search_docs("table sorting")]
    
  2. Read specific documentation:

    Agent: [calls cloudscape_read_doc("docs/components/table/sorting.md")]
    

Project Structure

cloudscape-docs-mcp/
├── server.py          # MCP server with search/read tools
├── ingest.py          # Documentation indexing script
├── pyproject.toml     # Project dependencies
├── docs/              # Documentation files (partially curated)
│   ├── components/    # Component documentation
│   ├── foundations/   # Design foundations
│   └── genai_patterns/# GenAI UI patterns
└── data/              # Generated vector database (gitignored)
    └── lancedb/

Configuration

Key settings in server.py and ingest.py:

Variable Default Description
MODEL_NAME jinaai/jina-code-embeddings-0.5b Embedding model
VECTOR_DIM 1536 Vector dimensions
MAX_UNIQUE_RESULTS 5 Max search results returned
DOCS_DIR ./docs Documentation source directory
DB_URI ./data/lancedb Vector database location

Development

# Install dev dependencies
uv sync --group dev

# Run with MCP inspector
npx @modelcontextprotocol/inspector uv --directory /path/to/cloudscape_docs run server.py
# Alternatively, use mcp cli to launch the server
mcp dev server.py

License

MIT License - See LICENSE for details.

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选