Cloudscape Docs MCP Server
Provides semantic search over AWS Cloudscape Design System documentation using natural language queries, enabling AI assistants to efficiently find and retrieve component documentation with token-efficient responses.
README
Cloudscape Docs MCP Server
A Model Context Protocol (MCP) server that provides semantic search over AWS Cloudscape Design System documentation. Built for AI agents and coding assistants to efficiently query component documentation.
Features
- Semantic Search - Find relevant documentation using natural language queries powered by Jina Code Embeddings 0.5B model
- Token Efficient - Returns concise file lists first, full content on demand
- Hardware Optimized - Automatic detection of Apple Silicon (MPS), CUDA, or CPU
- Local Vector Store - Uses LanceDB for fast, file-based vector search
Transport
This server uses the MCP stdio transport protocol.
Streamable HTTP transport coming soon.
Tools
| Tool | Description |
|---|---|
cloudscape_search_docs |
Search the documentation index. Returns top 5 relevant files with titles and paths. |
cloudscape_read_doc |
Read the full content of a specific documentation file. |

Requirements
- Python 3.13+
- ~3GB disk space for the embedding model
- 8GB+ RAM recommended
Installation
# Clone the repository
git clone https://github.com/praveenc/cloudscape-docs-mcp.git
cd cloudscape-docs-mcp
# Create virtual environment and install dependencies
uv sync
# Or with pip
pip install -e .
Setup
1. Add Documentation
Place your Cloudscape documentation files in the docs/ directory. Supported formats:
.md(Markdown).txt(Plain text).tsx/.ts(TypeScript/React)
2. Build the Index
Run the ingestion script to create the vector database:
uv run ingest.py
This will:
- Scan all files in
docs/ - Chunk content into ~2000 character segments
- Generate embeddings using Jina Code Embeddings 0.5B embedding model
- Store vectors in
data/lancedb/
Note: Running
uv run ingest.pymultiple times is safe but performs a full re-index each time. The script usesmode="overwrite"which drops and recreates the database table. There is no incremental update or change detection—all documents are re-scanned and re-embedded on every run. This is idempotent (same docs produce the same result) but computationally expensive for large documentation sets.
3. Run the Server
uv run server.py
MCP Client Configuration
Claude Desktop
Add to your mcp.json:
{
"mcpServers": {
"cloudscape-docs": {
"command": "uv",
"args": ["run", "--directory", "/path/to/cloudscape-docs-mcp", "python", "server.py"]
}
}
}
Cursor / VS Code / Windsurf / Kiro
Add to your MCP settings:
{
"cloudscape-docs": {
"command": "uv",
"args": ["run", "--directory", "/path/to/cloudscape-docs-mcp", "python", "server.py"]
}
}
Zed
Add to your Zed settings (settings.json):
{
"context_servers": {
"cloudscape-docs": {
"command": {
"path": "uv",
"args": ["run", "--directory", "/path/to/cloudscape-docs-mcp", "python", "server.py"]
}
}
}
}
Usage Example
Once connected, an AI assistant can:
-
Search for components:
User: "How do I use the Table component with sorting?" Agent: [calls cloudscape_search_docs("table sorting")] -
Read specific documentation:
Agent: [calls cloudscape_read_doc("docs/components/table/sorting.md")]
Project Structure
cloudscape-docs-mcp/
├── server.py # MCP server with search/read tools
├── ingest.py # Documentation indexing script
├── pyproject.toml # Project dependencies
├── docs/ # Documentation files (partially curated)
│ ├── components/ # Component documentation
│ ├── foundations/ # Design foundations
│ └── genai_patterns/# GenAI UI patterns
└── data/ # Generated vector database (gitignored)
└── lancedb/
Configuration
Key settings in server.py and ingest.py:
| Variable | Default | Description |
|---|---|---|
MODEL_NAME |
jinaai/jina-code-embeddings-0.5b |
Embedding model |
VECTOR_DIM |
1536 |
Vector dimensions |
MAX_UNIQUE_RESULTS |
5 |
Max search results returned |
DOCS_DIR |
./docs |
Documentation source directory |
DB_URI |
./data/lancedb |
Vector database location |
Development
# Install dev dependencies
uv sync --group dev
# Run with MCP inspector
npx @modelcontextprotocol/inspector uv --directory /path/to/cloudscape_docs run server.py
# Alternatively, use mcp cli to launch the server
mcp dev server.py
License
MIT License - See LICENSE for details.
Acknowledgments
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。