CloudWatch MCP Server

CloudWatch MCP Server

A simplified MCP server that provides a streamlined way to interact with AWS CloudWatch resources (log groups, log queries, and alarms) through the MCP protocol.

Category
访问服务器

README

CloudWatch MCP Server

This simplified MCP server provides a streamlined way to interact with AWS CloudWatch resources through the MCP protocol. It exposes CloudWatch log groups, log queries, and alarms as resources and tools.

Features

  • List all CloudWatch log groups with their metadata
  • List all CloudWatch alarms with their current states
  • Query CloudWatch logs using CloudWatch Insights across multiple log groups
  • Discover available fields across multiple log groups with shared schema
  • Automatic JSON parsing for @message field in log queries
  • Check if specific log groups exist
  • Get detailed information about specific log groups
  • Filter alarms by state (all alarms or only those in ALARM state)
  • Retrieve all saved CloudWatch Logs Insights queries

Prerequisites

  • Python 3.12 or higher
  • AWS credentials configured (via environment variables, AWS CLI, or IAM role)
  • MCP CLI (version 0.1.1 or higher)
  • Boto3 (AWS SDK for Python)

Setup

  1. Make sure you have Python 3.12+ installed.

  2. Create a virtual environment (optional but recommended):

    python -m venv .venv
    source .venv/bin/activate  # On Windows: .venv\Scripts\activate
    
  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Configure AWS credentials if you haven't already:

    aws configure
    

    Or set environment variables:

    export AWS_ACCESS_KEY_ID="your-access-key"
    export AWS_SECRET_ACCESS_KEY="your-secret-key"
    export AWS_REGION="your-region"
    

Project Structure

  • cloudwatch_server.py - MCP server implementation for CloudWatch integration
  • aws_cloudwatch.py - Simplified AWS CloudWatch integration module
  • test_cloudwatch.py - Command-line utility to test the CloudWatch integration

Running the server

Start the MCP server:

python cloudwatch_server.py

Or using the MCP CLI:

mcp run cloudwatch_server.py

Using the MCP server

Resources

The server exposes the following resources:

  • cloudwatch://log-groups - Lists all CloudWatch log groups
  • cloudwatch://log-groups/{log_group_name} - Gets detailed information about a specific log group
  • cloudwatch://alarms - Lists all CloudWatch alarms
  • cloudwatch://alarms/in-alarm - Lists only CloudWatch alarms currently in ALARM state
  • cloudwatch://saved-queries - Lists all saved CloudWatch Logs Insights queries

Tools

The server provides the following tools:

  • query_logs - Query CloudWatch logs using CloudWatch Insights

    • Parameters:
      • log_group_names: Single log group name or list of log group names to query
      • query_string: CloudWatch Insights query string
      • start_time: (Optional) Start time for the query in Unix timestamp milliseconds
      • end_time: (Optional) End time for the query in Unix timestamp milliseconds
    • Features:
      • Automatically parses JSON in @message field
      • Returns structured data for JSON messages
      • Handles multiple log groups in a single query
  • discover_log_fields - Discover available fields across multiple log groups

    • Parameters:
      • log_group_names: Single log group name or list of log group names to analyze
    • Features:
      • Efficiently discovers fields across multiple log groups
      • Assumes shared schema across log groups
      • Detects nested JSON fields in @message
      • Identifies field types (number, boolean, string, array)
  • log_group_exists - Check if CloudWatch log groups exist

    • Parameters:
      • log_group_names: Single log group name or list of log group names to check
    • Returns:
      • Dictionary mapping each log group to its existence status
  • get_saved_queries - Fetch all saved CloudWatch Logs Insights queries

    • No parameters required

Testing the CloudWatch integration

You can test the CloudWatch integration directly using the provided test script:

# Make the test file executable
chmod +x test_cloudwatch.py

# List all log groups
./test_cloudwatch.py log-groups

# List all alarms
./test_cloudwatch.py alarms

# Use a specific AWS profile
./test_cloudwatch.py log-groups --profile my-profile

# Enable verbose logging
./test_cloudwatch.py alarms -v

Examples with MCP CLI

Using the MCP CLI:

# List all log groups
mcp inspect cloudwatch://log-groups

# Get details about a specific log group
mcp inspect cloudwatch://log-groups/my-log-group-name

# List all alarms
mcp inspect cloudwatch://alarms

# List alarms currently in ALARM state
mcp inspect cloudwatch://alarms/in-alarm

# List all saved CloudWatch Logs Insights queries
mcp inspect cloudwatch://saved-queries

# Query logs from multiple log groups using CloudWatch Insights
mcp call query_logs --log_group_names '["log-group-1", "log-group-2"]' --query_string "fields @timestamp, @message | limit 10"

# Query logs from a single log group (still supported)
mcp call query_logs --log_group_names "my-log-group" --query_string "fields @timestamp, @message | limit 10"

# Discover fields across multiple log groups
mcp call discover_log_fields --log_group_names '["log-group-1", "log-group-2"]'

# Check if multiple log groups exist
mcp call log_group_exists --log_group_names '["log-group-1", "log-group-2"]'

# Get all saved CloudWatch Logs Insights queries
mcp call get_saved_queries

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选