CLP MCP - DevOps Infrastructure Server

CLP MCP - DevOps Infrastructure Server

Enables comprehensive DevOps infrastructure management through tools for Jenkins, Ansible, Terraform, Kubernetes, and Docker operations. Features a sophisticated memory system for context retention and provides validation, generation, and optimization capabilities across DevOps workflows.

Category
访问服务器

README

CLP MCP - DevOps Infrastructure Server

A comprehensive Model Context Protocol (MCP) server designed for DevOps and infrastructure management. This server provides extensive tooling for Jenkins, Ansible, Terraform, Kubernetes, and Docker, along with a sophisticated memory system for context retention and reasoning tracking.

Features

🧠 Memory System

  • Store & Recall: Persistent key-value storage with metadata
  • Search: Full-text search across stored data with category filtering
  • Reasoning Tracking: Record and retrieve decision-making context
  • Context Management: Maintain state across interactions

🔧 DevOps Tools

Jenkins

  • Validate Jenkinsfiles for syntax and security issues
  • Generate pipeline templates for multiple project types
  • Analyze pipelines for optimization opportunities

Ansible

  • Validate playbooks for best practices
  • Generate playbook templates (webserver, database, K8s, etc.)
  • Lint playbooks for anti-patterns
  • Generate inventory files (INI/YAML)

Terraform

  • Validate configurations and detect security issues
  • Generate module templates (VPC, EC2, RDS, S3, etc.)
  • Format code to canonical style
  • Analyze state files
  • Generate backend configurations

Kubernetes

  • Validate manifests against best practices
  • Generate resource templates (Deployments, Services, etc.)
  • Create Helm charts
  • Analyze resources for optimization
  • Generate Kustomization files

Docker

  • Validate Dockerfiles for security and optimization
  • Generate multi-stage Dockerfile templates
  • Create docker-compose.yml files
  • Optimize existing Dockerfiles
  • Analyze image structures

📚 Resources

  • DevOps best practices documentation
  • Jenkins pipeline examples
  • Terraform module patterns

💡 Prompts

  • Infrastructure audit checklists
  • Deployment strategy recommendations

Installation

bun install

Development

Run the development server with hot reload:

bun run dev

Build

Build for production:

bun run build

Usage

This MCP server can be used with any MCP-compatible client (Claude Desktop, etc.). See DEVOPS_TOOLS.md for comprehensive documentation of all tools and usage examples.

Quick Examples

Store Infrastructure Info:

{
  "tool": "memory_store",
  "arguments": {
    "key": "prod_vpc_id",
    "value": "vpc-12345",
    "tags": ["production", "networking"],
    "category": "terraform"
  }
}

Generate Jenkins Pipeline:

{
  "tool": "generate_jenkinsfile",
  "arguments": {
    "projectType": "nodejs",
    "stages": ["build", "test", "deploy"],
    "agent": "docker"
  }
}

Validate Kubernetes Manifest:

{
  "tool": "validate_k8s_manifest",
  "arguments": {
    "content": "apiVersion: apps/v1\nkind: Deployment\n..."
  }
}

Documentation

Architecture

Built on:

  • @modelcontextprotocol/sdk: Official MCP TypeScript SDK
  • @smithery/sdk: Smithery platform integration
  • Zod: Schema validation
  • Bun: Fast JavaScript runtime

Memory System Architecture

The memory system provides:

  1. Key-Value Storage: Store any JSON-serializable data with metadata
  2. Tagging: Organize data with multiple tags
  3. Categories: Group data by infrastructure type
  4. Search: Full-text search across keys, values, and tags
  5. Reasoning History: Track decision-making context and rationale
  6. Context Management: Session-specific context storage

Tool Categories

Memory (6 tools)

  • memory_store, memory_recall, memory_delete
  • memory_search, add_reasoning, get_reasoning_history

Jenkins (3 tools)

  • validate_jenkinsfile, generate_jenkinsfile, analyze_jenkins_pipeline

Ansible (4 tools)

  • validate_ansible_playbook, generate_ansible_playbook
  • lint_ansible_playbook, generate_ansible_inventory

Terraform (5 tools)

  • validate_terraform, generate_terraform_module, format_terraform
  • analyze_terraform_state, generate_terraform_backend

Kubernetes (5 tools)

  • validate_k8s_manifest, generate_k8s_manifest, generate_helm_chart
  • analyze_k8s_resources, generate_kustomization

Docker (5 tools)

  • validate_dockerfile, generate_dockerfile, generate_docker_compose
  • optimize_dockerfile, analyze_docker_image

Total: 28 tools for comprehensive DevOps infrastructure management

Contributing

Contributions are welcome! Please ensure all tools follow the established patterns and include comprehensive error handling.

License

ISC

Project Info

This project uses Bun, a fast all-in-one JavaScript runtime.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选