Code Execution MCP

Code Execution MCP

Enables efficient AI agent operations through sandboxed Python code execution with progressive tool discovery, PII tokenization, and skills persistence, achieving up to 98.7% token reduction by processing data in a sandbox rather than in context.

Category
访问服务器

README

Code Execution MCP

Implements the patterns from Anthropic's "Code Execution with MCP" article for efficient AI agent operations.

Core Insight

Instead of loading thousands of tool definitions upfront and passing intermediate results through model context, agents write code that:

  1. Discovers tools on-demand (progressive disclosure)
  2. Processes data in a sandbox (not in context)
  3. Returns only summarized/filtered results

Result: Up to 98.7% token reduction compared to direct tool invocation.

Features

1. Sandboxed Code Execution

  • Resource limits (30s timeout, 500MB memory)
  • Restricted builtins (safe subset)
  • Safe modules (json, re, math, datetime, etc.)
  • Workspace file utilities

2. Progressive Tool Discovery

  • Search tools by query without loading definitions
  • Get summaries first, full definitions on-demand
  • Organized by category (security, memory, cluster, etc.)

3. PII Tokenization

  • Auto-detect sensitive data (emails, phones, SSNs, etc.)
  • Replace with tokens before data reaches model
  • Restore when needed for tool calls

4. Skills Persistence

  • Save reusable code snippets
  • Build compound capabilities over time
  • Share across sessions

Tools

Tool Description
execute_code Run Python in secure sandbox
search_tools Progressive tool discovery
get_tool_definition Load full tool details
save_skill Persist reusable code
load_skill Load saved skill
list_skills List all skills
sanitize_pii Tokenize PII in text
restore_pii Restore tokenized PII
write_workspace_file Persist data to workspace
read_workspace_file Read from workspace
list_workspace_files List workspace contents
get_execution_stats Environment statistics

Usage Examples

Efficient Data Processing

# Instead of returning 10,000 rows to context:
code = '''
data = json.loads(read_file("large_dataset.json"))
filtered = [d for d in data if d['status'] == 'active']
result = {
    'total': len(data),
    'active': len(filtered),
    'sample': filtered[:5]
}
'''
execute_code(code)
# Returns only summary, not full dataset

Progressive Tool Discovery

# Find security tools (minimal tokens)
search_tools("vulnerability", category="security", detail_level="summary")

# Load full definition only when needed
get_tool_definition("web_vuln_scanner", category="security")

Privacy-Preserving Operations

# Sanitize before processing
sanitize_pii("Contact john@example.com at 555-123-4567")
# Returns: "Contact [EMAIL_abc123] at [PHONE_def456]"

# Restore when needed
restore_pii("[EMAIL_abc123]")
# Returns: "john@example.com"

Building Skills

# Save a reusable skill
save_skill(
    name="filter_high_risk",
    code="def filter_high_risk(vulns): return [v for v in vulns if v['severity'] in ['high', 'critical']]",
    description="Filter vulnerabilities to high/critical only"
)

# Use in future code execution
code = '''
skill = load_skill("filter_high_risk")
exec(skill)
vulns = json.loads(read_file("scan_results.json"))
result = filter_high_risk(vulns)
'''

Installation

cd /mnt/agentic-system/mcp-servers/code-execution-mcp
pip install -e .

Configuration

Add to ~/.claude.json:

{
  "mcpServers": {
    "code-execution": {
      "command": "/mnt/agentic-system/.venv/bin/python3",
      "args": ["/mnt/agentic-system/mcp-servers/code-execution-mcp/src/code_execution_mcp/server.py"],
      "disabled": false
    }
  }
}

Architecture

code-execution-mcp/
├── workspace/           # Sandboxed file storage
├── skills/              # Persistent skill definitions
├── tools_registry/      # Tool definitions for discovery
│   ├── security/        # Security tools
│   └── memory/          # Memory tools
└── src/
    └── code_execution_mcp/
        └── server.py    # Main MCP server

Security Notes

  • Code runs with restricted builtins (no open, exec, eval on arbitrary input)
  • File access limited to workspace directory
  • Resource limits prevent runaway execution
  • No network access from sandbox

References

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选