
Code Execution Server
Enables execution of code in a sandbox environment with integrated web search capabilities. Provides a basic framework for running code safely, primarily designed for AI agents and research applications.
README
Code Execution Server
This repository provides a basic implementation of a code execution server, designed primarily for Xmaster (paper, code) and Browse Master (paper code). The full implementation is used in SciMaster.
Due to the proprietary nature of the full code, this repository only includes an open-source framework and the basic components required for code execution. It also includes a simple network search tool implementation.
⚠️ Warning: This is a basic code execution server without virtualization or safety protections. For added security, consider running it within Docker or Apptainer containers as necessary.
🛠️ Setup
Environment
Clone this repository and navigate to the project directory and install the required dependencies:
cd mcp_sandbox/
pip install -r requirements.txt
Tools
- setup the serper key in
configs/web_agent.json
- setup the models' api key in
configs/llm_call.json
🚀 Deploy the Code Execution Server
Step 1: Start the API Server
We will first start the API server used by the tools. This API server proxies all search-related services, including:
- Serper's Google Search Service
- A series of Model APIs
Navigate to the api_proxy directory and start the API server:
cd api_proxy
python api_server.py
Step 2: Deploy the Server
Deploy the server by running the following script in the MCP
directory:
cd MCP
bash deploy_server.sh
📝 Usage
Sending a Request
To send a request to the server, use the following curl
command:
curl -X POST "http://<your-server-url>/execute" \
-H "Content-Type: application/json" \
-d '{"code": "<your code here>"}'
⚡ Benchmarking
For benchmarking, you can run the following command to test the server's performance:
bash benchmarking/pressure.sh 100 100 10 benchmarking/script.lua http://127.0.0.1:30008
Example output:
Running 10s test @ http://127.0.0.1:30008/execute
100 threads and 100 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 50.21ms 47.15ms 296.96ms 53.20%
Req/Sec 24.13 13.58 130.00 54.99%
23185 requests in 10.10s, 4.27MB read
Requests/sec: 2295.61
Transfer/sec: 432.74KB
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。