Codebase Context
Provides AI assistants with real-time visibility into your codebase's internal libraries, team patterns, naming conventions, and usage frequencies to generate code that matches your team's actual practices.
README
codebase-context
AI coding agents don't know your codebase. This MCP fixes that.
Your team has internal libraries, naming conventions, and patterns that external AI models have never seen. This MCP server gives AI assistants real-time visibility into your codebase: which libraries your team actually uses, how often, and where to find canonical examples.
Quick Start
Add this to your MCP client config (Claude Desktop, VS Code, Cursor, etc.).
"mcpServers": {
"codebase-context": {
"command": "npx",
"args": ["codebase-context", "/path/to/your/project"]
}
}
If your environment prompts on first run, use npx --yes ... (or npx -y ...) to auto-confirm.
What You Get
- Internal library discovery →
@mycompany/ui-toolkit: 847 uses vsprimeng: 3 uses - Pattern frequencies →
inject(): 97%,constructor(): 3% - Pattern momentum →
Signals: Rising (last used 2 days ago) vsRxJS: Declining (180+ days) - Golden file examples → Real implementations showing all patterns together
- Testing conventions →
Jest: 74%,Playwright: 6% - Framework patterns → Angular signals, standalone components, etc.
- Circular dependency detection → Find toxic import cycles between files
How It Works
When generating code, the agent checks your patterns first:
| Without MCP | With MCP |
|---|---|
Uses constructor(private svc: Service) |
Uses inject() (97% team adoption) |
Suggests primeng/button directly |
Uses @mycompany/ui-toolkit wrapper |
| Generic Jest setup | Your team's actual test utilities |
Tip: Auto-invoke in your rules
Add this to your .cursorrules, CLAUDE.md, or AGENTS.md:
When generating or reviewing code, use codebase-context tools to check team patterns first.
Now the agent checks patterns automatically instead of waiting for you to ask.
Tools
| Tool | Purpose |
|---|---|
search_codebase |
Semantic + keyword hybrid search |
get_component_usage |
Find where a library/component is used |
get_team_patterns |
Pattern frequencies + canonical examples |
get_codebase_metadata |
Project structure overview |
get_indexing_status |
Indexing progress + last stats |
get_style_guide |
Query style guide rules |
detect_circular_dependencies |
Find import cycles between files |
refresh_index |
Re-index the codebase |
Configuration
| Variable | Default | Description |
|---|---|---|
EMBEDDING_PROVIDER |
transformers |
openai (fast, cloud) or transformers (local, private) |
OPENAI_API_KEY |
- | Required if provider is openai |
CODEBASE_ROOT |
- | Project root to index (CLI arg takes precedence) |
CODEBASE_CONTEXT_DEBUG |
- | Set to 1 to enable verbose logging (startup messages, analyzer registration) |
Performance Note
This tool runs locally on your machine using your hardware.
- Initial Indexing: The first run works hard. It may take several minutes (e.g., ~2-5 mins for 30k files) to compute embeddings for your entire codebase.
- Caching: Subsequent queries are instant (milliseconds).
- Updates: Currently,
refresh_indexre-scans the codebase. True incremental indexing (processing only changed files) is on the roadmap.
Links
- 📄 Motivation — Why this exists, research, learnings
- 📋 Changelog — Version history
- 🤝 Contributing — How to add analyzers
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。