CodeChecker MCP
一个用于 Cursor IDE 的代码审查工具,它使用 OpenAI 的 GPT 模型来提供智能的代码分析和建议。
README
CodeChecker MCP
一个为 Cursor IDE 设计的代码审查工具,它使用 OpenAI 的 GPT 模型来提供智能的代码分析和建议。
特性
- 使用 OpenAI 的 GPT 模型进行实时代码审查
- 通过 MCP 协议与 Cursor IDE 集成
- 支持 SSE 和 stdio 两种传输模式
- 详细的代码分析,并提供具体的改进建议
前提条件
- Python 3.10 或更高版本
- OpenAI API 密钥
- Cursor IDE
安装
- 克隆仓库:
git clone https://github.com/jacklandis29/codechecker-mcp.git
cd codechecker-mcp
- 创建并激活虚拟环境:
python -m venv venv
source venv/bin/activate # 在 Windows 上使用:venv\Scripts\activate
- 安装依赖:
pip install -e .
- 在项目根目录下创建一个
.env文件,并添加你的 OpenAI API 密钥:
OPENAI_API_KEY=your_api_key_here
使用方法
- 启动服务器:
python main.py --transport sse --port 8000
- 配置 Cursor IDE:
- 打开 Cursor 设置
- 添加以下配置:
{
"mcp": {
"endpoint": "http://127.0.0.1:8000/sse",
"enabled": true
}
}
- 在 Cursor IDE 中使用代码审查工具,选择代码并提供审查上下文。
配置
--transport: 选择 "sse" (用于 Cursor IDE 集成) 或 "stdio" (用于命令行使用)--port: 指定 SSE 服务器的端口号 (默认:8000)
许可
MIT 许可证
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。