CodeKarma MCP Server
Provides production insights and code analysis by leveraging Nexus instrumentation data to identify CPU-intensive methods and visualize execution flow trees. It enables developers to make data-driven decisions through real-time performance metrics and automated service discovery from Java class names.
README
CodeKarma MCP Server
A Model Context Protocol (MCP) server that provides production insights and code analysis capabilities using your Nexus instrumentation data. Analyze real production flows, identify hot methods, generate test cases, and make data-driven decisions about your code.
⚡ Quick Start Reference
🏠 Local Setup (Development)
./setup.sh # Install dependencies & setup venv
python3 quick_test.py # Test all tools with real data
./run_server.sh # Start local server (stdio)
🌐 Remote Setup (Docker)
cp env-example .env # Copy environment template
./restart-server.sh # Build & start Docker container
./generate-config.sh # Generate client config (interactive)
./test-mcp-server.sh # Test remote server via HTTP
🔧 Quick Commands
./restart-server.sh- Restart Docker container./generate-config.sh- Create MCP client configs (Direct or nginx proxy)python3 quick_test.py- Test all 4 tools locallycurl http://localhost:8547/health- Check Docker server health
🚀 Deployment Options
🏠 Local Server (Original)
- Direct Python execution
- Uses stdio transport
- For local development and testing
🌐 Remote Server (New!)
- HTTP/JSON-RPC transport with flexible authentication
- Docker containerized
- For shared team access and production use
- Port: 8547 (non-common port)
- Authentication: Two models supported:
- Direct: ck-domain header (no auth needed)
- nginx Proxy: Bearer token (nginx validates and adds ck-domain)
🚀 Features
- 🔥 Hot Method Detection - Identify CPU-intensive methods above configurable thresholds
- 📊 Production Usage Analysis - Get real-time insights about method execution patterns
- 🌳 Flow Tree Visualization - View individual and aggregated execution flow trees
- ⚡ Performance Optimization - Get CPU utilization insights and optimization recommendations
- 🎯 Data-Driven Development - Make code changes based on real production usage
📋 Prerequisites
- Python 3.8+
- Nexus service running on
http://localhost:8081 - Instrumented Java application with production flow data
⚡ Quick Start
🏠 Local Server Setup
1. Setup (One Command)
git clone <your-repo>
cd ck-mcp-server
./setup.sh
2. Test the Server
python3 quick_test.py
3. Configure Claude Desktop
Add this to your Claude Desktop claude_desktop_config.json:
{
"mcpServers": {
"nexus": {
"command": "python3",
"args": ["/absolute/path/to/ck-mcp-server/server.py"],
"env": {}
}
}
}
4. Start Using
./run_server.sh
🌐 Remote Server Setup (Recommended for Teams)
1. Deploy with Docker
# Copy environment template
cp env-example .env
# Edit .env with your Nexus endpoint if needed
# Start the server
docker-compose up -d --build
# Or use the simple restart script
./restart-server.sh
2. Generate Client Configuration
# Interactive configuration generator
./generate-config.sh
Two Connection Models:
- Direct Connection: Uses ck-domain header, connects directly to MCP server (port 8547)
- nginx Proxy: Uses Bearer token, connects through nginx (nginx validates token and adds ck-domain)
Options:
- Connection Type: Choose Direct or nginx Proxy
- Client Type: Choose Windsurf or Claude Desktop/Cursor
- Domain Examples: test, production, staging, or custom
Script will output ready-to-use JSON config for your specific deployment!
3. Verify Connection
# Health check
curl http://localhost:8547/health
# Test with domain header
curl -X POST http://localhost:8547/mcp \
-H "Content-Type: application/json" \
-H "ck-domain: test" \
-d '{"jsonrpc": "2.0", "id": 1, "method": "tools/list", "params": {}}'
🛠️ Available Tools
1. find_service_names 🔍
Find service names from a list of class names visible in your IDE. This tool helps discover which services contain the specified classes when the service name is unknown.
Parameters:
class_names(required): Array of fully qualified class names (e.g.,['com.example.service.UserService', 'com.example.util.DatabaseUtil'])
Usage:
- When you don't know the service name but have class names from your IDE
- Provide 10-20 class names for optimal matching accuracy
- If multiple services are found, the tool will prompt you to ask the user which service to analyze
- Use discovered service names with other production analysis tools
Example Workflows:
Single Service Found:
1. "Find services for these classes: com.example.UserService, com.example.OrderController"
2. → Returns: ["my-microservice"]
3. "Analyze production usage for my-microservice"
Multiple Services Found:
1. "Find services for these classes: com.example.UserService, com.example.OrderController"
2. → Returns: ["my-microservice", "order-service", "user-service"]
3. → LLM asks: "I found 3 services... Which service would you like to analyze?"
4. User responds: "Let's analyze my-microservice"
5. "Analyze production usage for my-microservice"
2. get_production_usage
Get production usage information for methods including throughput and activity status.
Parameters:
service_name(required): Name of the service (e.g., 'codetrails')class_name(required): Full class namemethod_name(optional): Specific method namestep(optional): Time window (default: '1m')
3. get_production_call_flows
Analyze production method call patterns and flows with aggregated performance metrics and hot method annotations.
Parameters:
service_name(required): Name of the serviceclass_name(required): Full class namemethod_name(optional): Specific method namestep(optional): Time window (default: '1m')
4. get_hot_methods 🔥
Get details about hot methods that have high CPU utilization in production (above 1% CPU threshold).
Parameters:
service_name(required): Name of the servicestep(optional): Time window (default: '1m')
💡 Usage Examples
Service Discovery (New!)
"I can see these classes in my IDE: UserService, OrderController, PaymentService, DatabaseUtil. Which services do they belong to?"
- Automatically discovers service names from class names
- No need to manually know service names
- Sets up other tools for further analysis
Complete Workflow (Unknown Service)
1. "Find services for: com.example.UserService, com.example.OrderController"
2. "Analyze production usage for [discovered-service] UserService class"
3. "Show hot methods in [discovered-service]"
- Start with class names from your IDE
- Discover services automatically
- Dive into production analysis
Hot Method Analysis
"Show me all hot methods in the codetrails service"
- Identifies CPU-intensive methods
- Shows CPU utilization percentages
- Provides optimization recommendations
Production Flow Analysis
"Analyze the production usage for OrderUtil class in codetrails service"
- Shows QPS, error rates, latency for each method
- Identifies active vs inactive methods
- Highlights HTTP endpoints
Execution Tree Visualization
"Show me the call flows for OrderController in codetrails"
- Displays aggregated flow trees
- Shows CPU annotations for hot methods (🔥)
- Includes flow IDs and metrics
Combined Analysis
"Get the call flows for OrderUtil and highlight any hot methods"
- Shows comprehensive flow analysis
- Annotates hot methods with CPU utilization
- Provides context about flow patterns
🎯 Key Features in Detail
🔥 Hot Method Detection
- CPU Threshold: Automatically detects methods above 1% CPU utilization
- Performance Impact: Shows actual CPU consumption percentages
- Optimization Targeting: Prioritizes optimization efforts on high-impact methods
- Visual Indicators: Hot methods marked with 🔥 in flow trees
📊 Flow Tree Annotations
- Individual Flows: Shows hot methods in each execution path
- Unified Trees: Aggregates CPU data across all flows
- Visual Clarity:
CPU: X.XX% 🔥annotations in tree output - Context Aware: Matches methods by className + methodName
⚡ Production Insights
- Real-time Data: Live production metrics from Nexus
- HTTP Endpoints: Shows which endpoints trigger hot methods
- Error Correlation: Combines CPU usage with error rates
- Throughput Analysis: QPS/QPM data alongside CPU metrics
🏗️ Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Claude UI │────│ MCP Server │────│ Nexus API │
│ │ │ │ │ │
│ Natural Lang │ │ - Tool Handlers │ │ - Flow Data │
│ Queries │ │ - Hot Methods │ │ - CPU Metrics │
│ │ │ - Tree Builders │ │ - Production │
└─────────────────┘ └──────────────────┘ └─────────────────┘
Components:
- NexusClient: Async HTTP client for Nexus API calls
- Hot Methods Engine: CPU threshold detection and annotation
- Tree Builders: Flow tree construction and visualization
- Analysis Functions: Production usage insights and recommendations
🧪 Testing
Local Testing
# Test all tools with real API
python3 quick_test.py
# Test raw APIs only
python3 quick_test.py --raw
What Gets Tested:
- ✅ All 4 MCP tools (service discovery, usage analysis, call flows, hot methods)
- ✅ Raw Nexus API connectivity (find-service-name, mpks, flows, flow-details, hot-methods)
- ✅ Service discovery from class names
- ✅ Hot method detection and annotation
- ✅ Real production data integration
Sample Test Output:
🚀 Quick MCP Tools Test
==========================================
0️⃣ SERVICE DISCOVERY TOOL
------------------------------
# Service Name Discovery
## Input Classes (4)
1. `OrderUtil` (Full: `com.example.codetrails.orders.util.OrderUtil`)
2. `OrderServiceImpl` (Full: `com.example.codetrails.orders.service.impl.OrderServiceImpl`)
3. `OrderController` (Full: `com.example.codetrails.orders.controller.OrderController`)
4. `RequestLogFilter` (Full: `com.example.codetrails.config.RequestLogFilter`)
## Discovery Results
✅ **Service Names Found:** 1 matching service(s)
**Domain:** test
### Matching Services:
1. `codetrails`
### Next Steps
You can now use these service name(s) with other production analysis tools:
- `get_production_usage(service_name="codetrails", class_name="...")`
- `get_production_call_flows(service_name="codetrails", class_name="...")`
- `get_hot_methods(service_name="codetrails")`
==================================================
3️⃣ HOT METHODS TOOL
------------------------------
# Hot Methods Report
**Service:** codetrails
**CPU Threshold:** ≥ 1.0%
## Hot Methods Found (1)
### 1. `OrderServiceImpl.compareCharactersExpensively` 🔥
**CPU Utilization:** 1.611%
**Throughput (QPS):** 1,723,283.72
**Optimization Target:** Primary candidate for performance improvement
📁 Project Structure
ck-mcp-server/
├── server.py # Local MCP server (stdio)
├── remote_server.py # Remote MCP server (HTTP/JSON-RPC)
├── quick_test.py # Comprehensive testing script
├── setup.sh # One-command local setup
├── restart-server.sh # Simple Docker container restart
├── test-mcp-server.sh # Remote server testing script
├── run_server.sh # Local server runner
├── requirements.txt # Python dependencies
├── Dockerfile # Docker image configuration
├── docker-compose.yml # Docker Compose setup
├── .dockerignore # Docker build exclusions
├── env-example # Environment variables template
├── mcp-config.json # Local MCP configuration (uses env vars)
├── generate-config.sh # Interactive MCP client config generator
├── README.md # This documentation
└── nexus-api.md # API reference
Key Configuration Files:
mcp-config.json: For local server (Claude Desktop) - setsCK_NEXUS_ENDPOINTenv vargenerate-config.sh: Interactive script to generate remote MCP client configs.env: Docker Compose environment variables
🔧 Configuration
Logging Level
Control the verbosity of server logs using the LOG_LEVEL environment variable:
Available Levels: DEBUG, INFO, WARNING, ERROR, CRITICAL
Default: INFO (shows INFO, WARNING, ERROR, CRITICAL)
To see debug logs:
# For Docker/remote server - add to .env file:
LOG_LEVEL=DEBUG
# For local server:
export LOG_LEVEL=DEBUG
./run_server.sh
What each level shows:
DEBUG: All logs including debug messages (most verbose)INFO: Informational messages and above (default)WARNING: Warning messages and aboveERROR: Error messages onlyCRITICAL: Critical errors only
Domain-Based Routing
The server uses the ck-domain header to determine which Nexus API path to use:
Generate MCP Client Configuration:
# Use the interactive generator
./generate-config.sh
# Example output for direct connection:
{
"mcpServers": {
"codekarma-insights": {
"url": "http://localhost:8547/mcp",
"headers": {
"ck-domain": "production" // ← Direct to MCP server
}
}
}
}
# Example output for nginx proxy:
{
"mcpServers": {
"codekarma-insights": {
"url": "https://nginx-proxy.com/mcp",
"headers": {
"Authorization": "Bearer mcp_xxx" // ← nginx validates this
}
}
}
}
Domain → API Path Mapping:
ck-domain: "test"→ Nexus calls to/test/api/method-graph-paths/...ck-domain: "production"→ Nexus calls to/production/api/method-graph-paths/...ck-domain: "staging"→ Nexus calls to/staging/api/method-graph-paths/...
Nexus Connection
Default: AWS ELB endpoint (see server.py)
Recommended: Set via environment variable:
export CK_NEXUS_ENDPOINT="http://your-nexus-server:8081"
Docker/Kubernetes:
# In your .env file or Helm values
CK_NEXUS_ENDPOINT=http://your-nexus-server:8081
Alternative: Modify directly in server.py:
class NexusClient:
def __init__(self, base_url: str = "http://your-nexus:8081"):
CPU Threshold
Default: 1.0% for hot method detection
To change, modify in server.py:
hot_methods = await client.get_hot_methods(service_name, cpu_threshold=2.0)
🐛 Troubleshooting
Connection Issues
❌ Error: Connection refused
Solution: Ensure Nexus is running on localhost:8081
No Hot Methods Found
No hot methods found (no methods exceed 1% CPU utilization threshold)
Solution: Check that your application has CPU-intensive operations or lower the threshold
Empty Flow Trees
No production data found for ClassName
Solution: Verify class name exists and has production traffic
Missing CPU Annotations
Flow trees show but no 🔥 indicators
Solution: Ensure hot methods API is working: curl http://localhost:8081/{domain}/api/method-graph-paths/hot-methods?serviceName=yourservice&cpuThreshold=1
🚀 Next Steps
- Deploy to Production: Use with your production Nexus instance
- Custom Thresholds: Adjust CPU thresholds for your environment
- Integration: Add to CI/CD pipelines for performance monitoring
- Optimization: Use hot method data to prioritize performance improvements
- Monitoring: Set up alerts for new hot methods in production
🤝 Contributing
- Add New Tools: Extend
handle_list_tools()andhandle_call_tool() - Enhance Analysis: Add new metrics and insights to existing tools
- Improve Visualization: Enhance tree rendering and annotations
- Testing: Add test cases to
quick_test.py
📊 API Endpoints Used
The server integrates with these Nexus endpoints (domain dynamically set via ck-domain header):
POST /{domain}/api/method-graph-paths/find-service-name- Service discovery from class namesGET /{domain}/api/method-graph-paths/mpks- Method summary with profiling infoGET /{domain}/api/method-graph-paths/flows- Flow IDs for methodsGET /{domain}/api/method-graph-paths/flow-details- Detailed flow treesGET /{domain}/api/method-graph-paths/hot-methods- CPU-intensive methods
Examples:
- With
ck-domain: test→/test/api/method-graph-paths/mpks - With
ck-domain: production→/production/api/method-graph-paths/mpks
🔥 Ready to optimize your production code with data-driven insights!
Start by running ./setup.sh and then python3 quick_test.py to see your hot methods in action.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。