CodeRAG
An MCP server that transforms codebases into knowledge graphs using Neo4J, enabling AI assistants to understand code structure, relationships, and metrics for more context-aware assistance.
README
CodeRAG - Graph-Powered Code Analysis
Transform your codebase into an intelligent knowledge graph for AI-powered insights
CodeRAG is a revolutionary tool that builds a comprehensive graph database of your code structure using Neo4J. By mapping classes, methods, relationships, and dependencies, it enables AI assistants to understand your codebase at a deeper level and provide more accurate, context-aware assistance.
What CodeRAG Does
🔍 Smart Code Scanning - Automatically analyzes your codebase and builds a detailed graph of all classes, methods, interfaces, and their relationships
📊 Quality Insights - Calculates industry-standard metrics (CK metrics, package coupling, architectural patterns) to identify code smells and improvement opportunities
🤖 AI Integration - Connects seamlessly with AI coding assistants through the Model Context Protocol (MCP), giving them deep understanding of your code structure
🏗️ Architecture Analysis - Visualizes inheritance hierarchies, dependency chains, and architectural patterns to help you understand complex codebases
Perfect For
- Code Reviews - Get AI assistance that understands your entire codebase context
- Onboarding - Help new team members quickly understand large, complex projects
- Refactoring - Identify tightly coupled code, circular dependencies, and architectural issues
- Documentation - Generate insights about code relationships and design patterns
- Legacy Analysis - Map and understand inherited codebases with complex structures
Supported Languages
- TypeScript & JavaScript
- Java
- Python
- C# (coming soon)
Quick Start
Get up and running in 5 minutes:
-
Clone and Install
git clone https://github.com/JonnoC/CodeRAG.git cd CodeRAG npm install -
Setup Neo4J Database (see our detailed guide for help)
# Using Docker (easiest) docker run --name neo4j-coderag -p 7474:7474 -p 7687:7687 -d \ --env NEO4J_AUTH=neo4j/your_password neo4j:5.12 -
Configure Environment
cp .env.example .env # Edit .env with your Neo4J credentials -
Scan Your First Project
npm run build npm run scan /path/to/your/project -
Connect to Your AI Assistant
Add to your AI tool's MCP configuration:
{ "mcpServers": { "coderag": { "command": "node", "args": ["/path/to/CodeRAG/build/index.js"] } } }
📖 Read the Complete User Guide for detailed setup instructions, AI tool integrations, and advanced usage.
Key Features
- 🔧 Automated Scanning - Parses TypeScript, JavaScript, Java, and Python projects
- 🎯 Smart Analysis - Identifies classes, methods, interfaces, inheritance, and dependencies
- 📈 Quality Metrics - CK metrics, package coupling, architectural issue detection
- 🤖 AI-Ready - Integrates with Claude Code, Windsurf, Cursor, VS Code Continue, and more
- 💡 Guided Prompts - Interactive workflows for code analysis and exploration
- 🔄 Dual Modes - STDIO for direct AI integration, HTTP for web-based tools
Example Use Cases
🕵️ Code Investigation
"Show me all the classes that call the authenticate method"
Use find_classes_calling_method with method_name="authenticate"
🏗️ Architecture Review
"What are the architectural issues in this codebase?"
Use find_architectural_issues to detect circular dependencies, god classes, and high coupling
📊 Quality Assessment
"How complex is my UserService class?"
Use calculate_ck_metrics for class_id="com.example.UserService"
🔍 Dependency Analysis
"What does this class depend on and what depends on it?"
Use the find_dependencies prompt for interactive guidance
Common Commands
# Quick project scan
npm run scan /path/to/project
# Start for AI assistant integration
npm start
# Run quality analysis
npm run scan /path/to/project -- --analyze
# Start web server for HTTP access
npm start -- --sse --port 3000
Documentation
📚 Complete User Guide - Detailed setup, integrations, and workflows
Contributing
Contributions welcome! Please read our contributing guidelines and submit pull requests to help improve CodeRAG.
License
MIT - see LICENSE for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。