Colab MCP
Enables AI coding assistants like Claude Code, Cursor, and Codex to share chat logs, terminal history, and session context with each other. Eliminates the need to re-explain context when switching between different AI coding tools.
README
Colab MCP 🔗
Stop losing context when you switch between AI coding tools.
A Model Context Protocol (MCP) server that lets Claude Code, Cursor, Codex, and other AI coding assistants share logs and session history with each other.
The Problem
You're coding with Claude Code. You make progress. Then you switch to Cursor to test something. Now you've lost all your context. You explain everything again. Then you jump to Codex. Explain it all over again.
It's exhausting.
The Solution
Colab MCP is a shared MCP server that exposes your chat logs, terminal history, and IDE events as tools and resources across all your AI coding assistants.
When you switch tools, your AI already knows what you were working on. No more copy-pasting. No more re-explaining. Just continuous flow.
✨ Features
- 🔄 Share context across tools - Claude Code, Cursor, Codex, Gemini
- 📜 Access chat transcripts from previous sessions
- 🔍 Search across all logs - find that conversation from last week
- 🎯 Session summaries - quick overview of what you were working on
- 🖥️ Terminal & IDE event tracking - see what commands were run
- 🚀 Fast setup - one command to install across all your tools
🚀 Quick Start
1. Install
pip install colab-mcp
2. Configure Your AI Tools
Run the interactive installer:
sudo colab-mcp-install
The installer will:
- 🔍 Detect which AI coding tools you have installed
- ✅ Let you choose which ones to configure
- ⚙️ Add Colab MCP to their MCP server configs
- 📝 Give you instructions to restart each tool
3. Restart Your AI Tools
Restart Claude Code, Cursor, Codex, or whichever tools you configured.
That's it! 🎉
📖 Usage
Once installed, Colab MCP exposes several tools and resources to your AI assistants:
Tools
list_sessions- Get a list of all coding sessionsfetch_transcript- Retrieve the full transcript of a sessionsummarize_session- Get a quick summary of what happenedsearch_logs- Search across all logs (chat, MCP, IDE events)codex_status- Check recent Codex CLI activity
Example Prompts
Try asking your AI assistant:
"What was I working on in my last session?"
"Search my logs for discussions about authentication"
"Summarize my session from yesterday afternoon"
"What errors did I encounter in the last hour?"
🛠️ Manual Configuration
If you prefer to configure manually, add this to your MCP config:
Claude Code (~/.claude/mcp.json)
{
"servers": {
"colab-mcp": {
"command": "colab-mcp",
"env": {
"CLAUDE_HOME": "/home/yourusername/.claude",
"CURSOR_LOGS": "/home/yourusername/.cursor-server/data/logs",
"TMPDIR": "/tmp"
}
}
}
}
Cursor (~/.cursor/mcp.json)
{
"mcpServers": {
"colab-mcp": {
"command": "colab-mcp",
"env": {
"CLAUDE_HOME": "/home/yourusername/.claude",
"CURSOR_LOGS": "/home/yourusername/.cursor-server/data/logs",
"TMPDIR": "/tmp"
}
}
}
}
Codex (~/.codex/config.toml)
[mcp_servers.colab-mcp]
command = "colab-mcp"
args = []
env = { CLAUDE_HOME = "/home/yourusername/.claude", CURSOR_LOGS = "/home/yourusername/.cursor-server/data/logs", TMPDIR = "/tmp" }
🗂️ Architecture
graph TB
subgraph AI["AI Tools"]
Claude[Claude Code]
Cursor[Cursor]
Codex[Codex]
end
MCP[Colab MCP Server]
subgraph Logs["Log Files"]
Chat[Chat History]
IDE[IDE Events]
Term[Terminal]
end
Claude --> MCP
Cursor --> MCP
Codex --> MCP
MCP --> Chat
MCP --> IDE
MCP --> Term
style MCP fill:#e8f4f8,stroke:#4a90a4,stroke-width:2px
style AI fill:#f9f9f9,stroke:#ccc
style Logs fill:#f9f9f9,stroke:#ccc
🤝 Contributing
Contributions are welcome! Check out the docs/ folder for more detailed information about how Colab MCP works.
📝 License
MIT License - see LICENSE for details.
🙏 Acknowledgments
Built with FastMCP - the fastest way to build MCP servers in Python.
Made with ❤️ by developers tired of losing context
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。