ComfyUI MCP Server
Enables orchestration of ComfyUI workflows through natural language by discovering workflow templates, applying mutations, and submitting prompts to running ComfyUI instances. Provides asset validation and lightweight tooling for AI image generation experimentation.
README
ComfyUI MCP Server
An experimental Model Context Protocol (MCP) server that orchestrates ComfyUI workflows. The runtime discovers workflow templates, validates model assets, lets you tweak high-level parameters, and submits prompts to a running ComfyUI instance.
- Workflow discovery – load JSON templates from a directory hierarchy and expose human-readable summaries.
- Asset cataloguing – scan checkpoints, LoRAs, VAEs, text encoders, and embeddings so MCP clients can target valid resources.
- High-level mutations – update prompts, samplers, LoRA stacks, and resolution bounds without hand editing graph JSON.
- Execution tooling – run workflows through the ComfyUI API with optional live streaming of prompt updates.
Prerequisites
- Python 3.11+
- A running ComfyUI instance reachable over HTTP (defaults to
http://127.0.0.1:8188) - Access to the workflow JSON templates and any model asset directories you plan to expose
Installation
-
Clone the repository
git clone https://github.com/<your-org>/ComfyUI_MCP.git cd ComfyUI_MCP -
Create an isolated environment (recommended)
python -m venv .venv source .venv/bin/activate # or use uv: uv venv -
Install the package
pip install -e . # or: uv pip install --editable .
This installs two console scripts:
comfyui-mcp– helper CLI for inspecting assets and workflowscomfyui-mcp-serve– FastMCP runtime that exposes MCP tools over stdio, SSE, or streamable HTTP
Configuration
Configuration is provided via a TOML file. Start by copying the example file and customising the values:
cp config.example.toml ~/.config/comfyui-mcp.toml
Example configuration
# ~/.config/comfyui-mcp.toml
base_url = "http://127.0.0.1:8188"
# default_workflow = "basic_workflow"
[directories]
# Each value maps to a ComfyUI model API endpoint or folder name that can be
# queried remotely. Supply fully qualified endpoints ("/models/checkpoints")
# or the folder alias returned by ``GET /models`` ("checkpoints", "vae", etc.).
checkpoints = "/models/checkpoints"
loras = "/models/loras"
vaes = "/models/vae"
text_encoders = "/models/clip"
embeddings = "/models/embeddings"
[default_bounds]
cfg_min = 1.0
cfg_max = 20.0
steps_min = 1
steps_max = 150
width_min = 128
width_max = 2048
height_min = 128
height_max = 2048
[feature_toggles]
# enable_streaming controls live prompt updates when executing workflows
enable_streaming = true
# enable_batch_execution toggles multi-workflow prompts (experimental)
enable_batch_execution = false
# watch_workflows rescan templates when files on disk change
watch_workflows = false
Environment overrides
Environment variables prefixed with COMFYUI_MCP_ override configuration values at runtime. Common
examples:
COMFYUI_MCP_CONFIG– path to the TOML file (used by the runtime launcher)COMFYUI_MCP_BASE_URL– override the ComfyUI HTTP endpointCOMFYUI_MCP_DIRECTORIES_CHECKPOINTS– point to a different checkpoints folderCOMFYUI_MCP_FEATURES_WATCH_WORKFLOWS– toggle template reloading without editing the config file
CLI usage
Inspect templates and assets before wiring the server into an MCP client:
# List discovered workflow templates
comfyui-mcp list --config ~/.config/comfyui-mcp.toml --json
# Describe a template including semantic roles and graph metadata
comfyui-mcp describe basic_workflow --config ~/.config/comfyui-mcp.toml --json
# Enumerate checkpoints, LoRAs, VAEs, text encoders, and embeddings
comfyui-mcp assets --config ~/.config/comfyui-mcp.toml --json
CLI flags allow ad-hoc overrides without editing your TOML file:
comfyui-mcp list \
--base-url http://localhost:8188 \
--workflows-path ~/comfyui-mcp/workflows \
--directory checkpoints=~/models/StableDiffusion \
--json
Running the MCP server
Use comfyui-mcp-serve to expose the workflow tools to MCP clients. Choose a transport based on your
integration target.
# stdio transport (ideal for IDE plugins / Cursor)
COMFYUI_MCP_CONFIG=~/.config/comfyui-mcp.toml \
comfyui-mcp-serve --transport stdio
# Streamable HTTP transport (FastMCP HTTP gateway)
COMFYUI_MCP_CONFIG=~/.config/comfyui-mcp.toml \
comfyui-mcp-serve --transport streamable-http --host 0.0.0.0 --port 8000
Optional flags:
--instructions– override the instruction string advertised to MCP clients--host/--port– adjust bindings for HTTP/SSE transports
The runtime validates configured asset directories on startup and will exit with descriptive errors if any paths are missing or unreadable.
IDE / agent integration
Many MCP-aware tools (Cursor, Claude Desktop, Windsurf, etc.) accept a JSON manifest describing available
servers. The snippet below embeds the ComfyUI MCP server alongside other backends using the same structure as
Cursor's mcpServers configuration.
{
"mcpServers": {
"comfyui-control": {
"command": "uv",
"args": [
"run",
"--with",
"fastmcp",
"--with",
"aiohttp",
"--with",
"orjson",
"--with",
"python-dotenv",
"--with",
"pydantic",
"comfyui-mcp-serve",
"--transport",
"stdio"
],
"env": {
"COMFYUI_MCP_CONFIG": "/data/comfy_ui_mcp/config.toml",
"PYTHONUNBUFFERED": "1"
}
}
}
}
Adjust the COMFYUI_MCP_CONFIG path and any Python dependency flags to match your environment. When Cursor or
another MCP client launches, it will spawn comfyui-mcp-serve over stdio using the configuration you
supplied.
If you prefer to mirror the repository's bundled mcp.json, copy the file and tweak the command, transport,
or environment variables as needed for your setup.
Repository layout
src/comfyui_mcp/– server implementation, CLI, and FastMCP runtime glueworkflows/– example workflow templates discovered by defaultdocs/– additional design notes and reference materialtests/– unit tests for asset discovery and workflow mutation helpers
Contributing
Bug reports and pull requests are welcome! Please include reproduction steps and relevant ComfyUI versions when filing issues.
License
Distributed under the MIT license. See LICENSE (or the top-level repository metadata) for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。