ComfyUI MCP Server

ComfyUI MCP Server

Enables AI agents to manage ComfyUI workflows using a human-readable Domain Specific Language (DSL), with automatic conversion to/from JSON format. Supports workflow creation, validation, execution, and monitoring through natural language interactions.

Category
访问服务器

README

ComfyUI MCP Server

CI codecov PyPI version Python 3.10+ License: MIT

DSL-first workflow management for ComfyUI via Model Context Protocol (MCP)

A production-ready MCP server that enables AI agents to manage ComfyUI workflows using a human-readable Domain Specific Language (DSL). The core design philosophy is DSL-first: agents work entirely in DSL format, with JSON conversion happening transparently.

🚀 Quick Start

Installation

pip install comfy-mcp

Usage with Claude Code

  1. Create MCP configuration:
{
  "mcpServers": {
    "comfyui-workflows": {
      "command": "comfy-mcp",
      "args": [],
      "env": {}
    }
  }
}
  1. Start Claude Code with MCP:
claude --mcp-config mcp_config.json
  1. Use in conversation:
"Execute this workflow: [paste DSL]"
"List workflows in examples directory"
"Show ComfyUI queue status"

✨ Features

🔄 DSL-First Design

  • Agents work entirely in human-readable DSL
  • Automatic JSON ↔ DSL conversion
  • No need to think about format conversion

📁 File Operations

  • read_workflow - Auto-converts JSON to DSL
  • write_workflow - Saves DSL as JSON/DSL
  • list_workflows - Discovers workflow files
  • validate_workflow - DSL syntax validation
  • get_workflow_info - Workflow analysis

Execution Operations

  • execute_workflow - Run DSL workflows on ComfyUI
  • get_job_status - Monitor execution & download images
  • list_comfyui_queue - View ComfyUI queue status

🎨 DSL Syntax Example

## Model Loading

checkpoint: CheckpointLoaderSimple
  ckpt_name: sd_xl_base_1.0.safetensors

## Text Conditioning

positive: CLIPTextEncode
  text: a beautiful landscape, detailed, photorealistic
  clip: @checkpoint.clip

negative: CLIPTextEncode
  text: blurry, low quality
  clip: @checkpoint.clip

## Generation

latent: EmptyLatentImage
  width: 1024
  height: 1024

sampler: KSampler
  model: @checkpoint.model
  positive: @positive.conditioning
  negative: @negative.conditioning
  latent_image: @latent.latent
  seed: 42
  steps: 20

## Output

decode: VAEDecode
  samples: @sampler.latent
  vae: @checkpoint.vae

save: SaveImage
  images: @decode.image
  filename_prefix: output

🏗️ Architecture

┌─────────────────┐    ┌──────────────┐    ┌─────────────┐
│   AI Agent      │────│  MCP Server  │────│  ComfyUI    │
│   (Claude)      │    │              │    │   Server    │
└─────────────────┘    └──────────────┘    └─────────────┘
         │                       │                  │
         │ DSL Workflows         │ JSON API         │
         │                       │                  │
         ▼                       ▼                  ▼
   Natural Language ────► DSL Parser ────► JSON Converter

Key Components:

  • DSL Parser: Converts human-readable DSL to Abstract Syntax Tree
  • JSON Converter: Bidirectional conversion between DSL and ComfyUI JSON
  • MCP Server: Exposes tools via Model Context Protocol
  • Execution Engine: Integrates with ComfyUI API for workflow execution

📖 Documentation

Core Classes

  • DSLParser: Parse DSL text into Abstract Syntax Tree
  • DslToJsonConverter: Convert DSL AST to ComfyUI JSON
  • JsonToDslConverter: Convert ComfyUI JSON to DSL AST

MCP Tools

Tool Description Example
read_workflow Read and convert workflows to DSL read_workflow("workflow.json")
write_workflow Write DSL to disk as JSON/DSL write_workflow("output.json", dsl)
list_workflows Find workflow files list_workflows("./workflows")
validate_workflow Check DSL syntax validate_workflow(dsl_content)
get_workflow_info Analyze structure get_workflow_info(dsl_content)
execute_workflow Run on ComfyUI execute_workflow(dsl_content)
get_job_status Monitor execution get_job_status(prompt_id)
list_comfyui_queue View queue list_comfyui_queue()

🛠️ Development

Setup

git clone https://github.com/christian-byrne/comfy-mcp.git
cd comfy-mcp
pip install -e ".[dev]"
pre-commit install

Testing

# Run all tests
pytest

# Run with coverage
pytest --cov=comfy_mcp --cov-report=html

# Run specific test types
pytest -m unit
pytest -m integration
pytest -m "not slow"

Code Quality

# Format code
black .

# Lint code  
ruff check .

# Type checking
mypy comfy_mcp

Documentation

cd docs
make html

🔧 Configuration

Environment Variables

  • COMFYUI_SERVER: ComfyUI server address (default: 127.0.0.1:8188)
  • MCP_DEBUG: Enable debug logging
  • MCP_LOG_LEVEL: Set log level (DEBUG, INFO, WARNING, ERROR)

ComfyUI Setup

  1. Install ComfyUI
  2. Start server: python main.py --listen 0.0.0.0
  3. Ensure models are installed in models/checkpoints/

🤝 Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

Development Workflow

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature-name
  3. Make changes and add tests
  4. Run tests and linting: pytest && black . && ruff check .
  5. Submit a pull request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • ComfyUI - Amazing stable diffusion GUI
  • FastMCP - Excellent MCP framework
  • Anthropic - Model Context Protocol specification

📈 Roadmap

  • [ ] v0.2.0: Enhanced DSL features (templates, macros)
  • [ ] v0.3.0: Web UI for workflow management
  • [ ] v0.4.0: Git integration for workflow versioning
  • [ ] v0.5.0: ComfyUI node discovery and documentation
  • [ ] v1.0.0: Production deployment features

Built with ❤️ for the ComfyUI and AI automation community

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选