Concept Tracker
Automatically extracts technical concepts from AI coding conversations, organizes them into a searchable knowledge base with hierarchy and categories, and links them to specific locations in your codebase.
README
Concept Tracker
An MCP (Model Context Protocol) server that automatically extracts technical concepts from your AI coding conversations, organizes them into a searchable knowledge base, and links them to your actual codebase.
Overview
When working with AI coding assistants, you discuss countless technical concepts — libraries, design patterns, language features, architectural decisions. These valuable learning moments get buried in chat history and forgotten.
Concept Tracker captures this knowledge automatically. It hooks into your conversations in real-time, extracts technical concepts, and builds a per-project knowledge base that shows you:
- What concepts you've learned and discussed
- Why they matter (with explanations)
- Where they appear in your code
Features
Multi-IDE Support
- Claude Code: Native hook integration for automatic extraction
- Cursor: Full hook support with stop event handling
- Continue.dev: Webhook-based integration
- Universal VS Code extension works across all AI tools
Real-Time Concept Extraction
- Hooks into AI coding conversations as they happen
- LLM-powered extraction identifies technical concepts automatically
- Captures original chat context for future reference
Smart Organization
- Hierarchy: Concepts organized in parent-child relationships (e.g., "useState" under "React Hooks")
- Categories: Language features, libraries/frameworks, design patterns, architectural decisions
- Deduplication: Exact name matching prevents duplicate entries
Codebase Linking
- Real-time scanning on file save
- Finds where each concept appears in your project
- Direct links to specific file locations
Dual Dashboard
- IDE Panel: Quick access without leaving your editor
- Web App: Full-featured dashboard for deeper exploration
Knowledge Management
- Edit concept names and explanations
- Merge similar concepts
- Manual concept addition
- Export to JSON or Markdown
- Notifications when new concepts are extracted
Concept Structure
Each concept contains:
{
"id": "uuid",
"name": "useState",
"category": "library",
"parent": "React Hooks",
"explanation": "A React Hook that lets you add state to functional components...",
"chatSnippets": [
{
"timestamp": "2025-01-15T10:30:00Z",
"content": "useState returns a pair: the current state value and a function to update it..."
}
],
"codeLocations": [
"src/components/Counter.tsx:12",
"src/hooks/useAuth.ts:8"
],
"firstSeen": "2025-01-15T10:30:00Z",
"lastSeen": "2025-01-20T14:22:00Z"
}
Architecture
┌─────────────────────────────────────────────────────────────────┐
│ Claude Code │
│ │ │
│ (hooks API) │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ Concept Tracker MCP │ │
│ │ ┌───────────────┐ ┌───────────────┐ ┌─────────────┐ │ │
│ │ │ Extractor │ │ Hierarchy │ │ Scanner │ │ │
│ │ │ (LLM) │ │ Manager │ │ (Codebase) │ │ │
│ │ └───────────────┘ └───────────────┘ └─────────────┘ │ │
│ │ │ │ │
│ │ ┌──────▼──────┐ │ │
│ │ │ Storage │ │ │
│ │ │ (Local) │ │ │
│ │ └─────────────┘ │ │
│ └─────────────────────────────────────────────────────────┘ │
│ │ │
│ ┌─────────────┴─────────────┐ │
│ ▼ ▼ │
│ ┌─────────────────┐ ┌─────────────────┐ │
│ │ IDE Panel │ │ Web App │ │
│ │ (VS Code) │ │ (localhost) │ │
│ └─────────────────┘ └─────────────────┘ │
└─────────────────────────────────────────────────────────────────┘
Concept Categories
| Category | Examples |
|---|---|
| Language Features | async/await, generics, decorators, pattern matching |
| Libraries & Frameworks | React hooks, Express middleware, Prisma models |
| Design Patterns | Dependency injection, observer pattern, factory pattern |
| Architecture | Microservices, event sourcing, CQRS, hexagonal architecture |
Roadmap
Phase 1: MVP
- [x] Project setup
- [x] Basic concept extraction (DeepSeek API)
- [x] Local JSON storage
- [x] Simple web dashboard
- [x] Claude Code hook integration (auto-extract on conversation)
Phase 2: Enhanced Features
- [x] Hierarchy management UI
- [x] Real-time codebase scanning
- [x] VS Code panel integration
- [x] Concept merge/edit functionality
- [x] Export capabilities
Phase 3: Multi-IDE Support (Current)
- [x] Cursor integration
- [x] Continue.dev integration
- [x] Universal VS Code extension (works with any AI tool)
- [x] Unified configuration system
- [x] IDE adapter abstraction layer
Tech Stack
- MCP Server: TypeScript
- Storage: Local JSON/SQLite
- Web Dashboard: React + Vite
- IDE Panel: VS Code Webview API
- Code Scanning: Tree-sitter / ripgrep
Getting Started
Prerequisites
- Node.js 18+
- npm 9+
- DeepSeek API key (for concept extraction)
Installation
# Clone and enter the project
cd concept-tracker
# Install all dependencies
npm install
# Create your .env file
cp .env.example .env
# Edit .env and add your DEEPSEEK_API_KEY
# Build the MCP server
npm run build
# Run the universal installer (detects and configures all IDEs)
./scripts/install.sh
# Start the servers
npm run dev:api # API server (port 3001)
npm run dev # Dashboard (port 3000)
IDE-Specific Installation
If you prefer to install hooks for specific IDEs:
# Claude Code only
./scripts/install-claude-hook.sh
# Cursor only
./scripts/install-cursor-hook.sh
# Continue.dev only
./scripts/install-continue-hook.sh
Running the Dashboard
# Development mode with hot reload
npm run dev
# The dashboard will open at http://localhost:3000
Building for Production
# Build both MCP server and dashboard
npm run build
Configuration
Remote MCP Setup (Hosted Service)
If you're using a hosted version of Concept Tracker, add this to your Cursor MCP config (~/.cursor/mcp.json):
{
"mcpServers": {
"concept-tracker": {
"url": "https://your-deployed-url.railway.app/sse?token=YOUR_UNIQUE_TOKEN"
}
}
}
Replace YOUR_UNIQUE_TOKEN with a unique identifier (8-64 alphanumeric characters or dashes). This token isolates your concepts from other users.
Claude Code MCP Setup
Add to your Claude Code MCP configuration (~/.claude.json or project .claude/settings.json):
{
"mcpServers": {
"concept-tracker": {
"command": "node",
"args": ["/path/to/concept-tracker/mcp-server/dist/index.js"],
"env": {
"DEEPSEEK_API_KEY": "your-api-key-here"
}
}
}
}
Environment Variables
| Variable | Description | Required |
|---|---|---|
DEEPSEEK_API_KEY |
Your DeepSeek API key for concept extraction | Yes |
STORAGE_PATH |
Custom storage path (default: ~/.concept-tracker) |
No |
MCP Tools
The Concept Tracker MCP server provides these tools:
| Tool | Description |
|---|---|
extract_concepts |
Extract technical concepts from conversation text |
list_concepts |
List all concepts with optional category/search filters |
get_concept |
Get detailed info about a specific concept |
add_concept |
Manually add a new concept |
update_concept |
Update a concept's name or explanation |
delete_concept |
Remove a concept from the knowledge base |
Deploying to Railway (Self-Hosting)
To host your own public Concept Tracker MCP:
1. Prerequisites
- A Railway account
- This repository pushed to GitHub
2. Deploy
# Install Railway CLI
npm install -g @railway/cli
# Login to Railway
railway login
# Initialize project in this directory
railway init
# Link to your project
railway link
# Set your DeepSeek API key
railway variables set DEEPSEEK_API_KEY=your-api-key-here
# Deploy
railway up
Or use the Railway dashboard:
- Create a new project
- Connect your GitHub repo
- Add environment variable:
DEEPSEEK_API_KEY - Railway will auto-detect and deploy
3. Share with Users
Once deployed, share the URL with users. They'll configure Cursor like this:
{
"mcpServers": {
"concept-tracker": {
"url": "https://YOUR-APP.railway.app/sse?token=their-unique-token"
}
}
}
Each user should create their own unique token for isolated concept storage.
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。