Consult7
Enables AI agents to analyze large codebases and document collections by consulting large context window models (up to 2M tokens) via OpenRouter when files exceed the current agent's context limits.
README
Consult7 MCP Server
Consult7 is a Model Context Protocol (MCP) server that enables AI agents to consult large context window models via OpenRouter for analyzing extensive file collections - entire codebases, document repositories, or mixed content that exceed the current agent's context limits.
Why Consult7?
Consult7 enables any MCP-compatible agent to offload file analysis to large context models (up to 2M tokens). Useful when:
- Agent's current context is full
- Task requires specialized model capabilities
- Need to analyze large codebases in a single query
- Want to compare results from different models
"For Claude Code users, Consult7 is a game changer."
How it works
Consult7 collects files from the specific paths you provide (with optional wildcards in filenames), assembles them into a single context, and sends them to a large context window model along with your query. The result is directly fed back to the agent you are working with.
Example Use Cases
Quick codebase summary
- Files:
["/Users/john/project/src/*.py", "/Users/john/project/lib/*.py"] - Query: "Summarize the architecture and main components of this Python project"
- Model:
"google/gemini-3-flash-preview" - Mode:
"fast"
Deep analysis with reasoning
- Files:
["/Users/john/webapp/src/*.py", "/Users/john/webapp/auth/*.py", "/Users/john/webapp/api/*.js"] - Query: "Analyze the authentication flow across this codebase. Think step by step about security vulnerabilities and suggest improvements"
- Model:
"anthropic/claude-sonnet-4.5" - Mode:
"think"
Generate a report saved to file
- Files:
["/Users/john/project/src/*.py", "/Users/john/project/tests/*.py"] - Query: "Generate a comprehensive code review report with architecture analysis, code quality assessment, and improvement recommendations"
- Model:
"google/gemini-2.5-pro" - Mode:
"think" - Output File:
"/Users/john/reports/code_review.md" - Result: Returns
"Result has been saved to /Users/john/reports/code_review.md"instead of flooding the agent's context
Featured: Gemini 3 Models
Consult7 supports Google's Gemini 3 family:
- Gemini 3 Pro (
google/gemini-3-pro-preview) - Flagship reasoning model, 1M context - Gemini 3 Flash (
google/gemini-3-flash-preview) - Ultra-fast model, 1M context
Quick mnemonics for power users:
gemt= Gemini 3 Pro + think (flagship reasoning)gemf= Gemini 3 Flash + fast (ultra fast)gptt= GPT-5.2 + think (latest GPT)grot= Grok 4 + think (alternative reasoning)ULTRA= Run GEMT, GPTT, GROT, and OPUT in parallel (4 frontier models)
These mnemonics make it easy to reference model+mode combinations in your queries.
Installation
Claude Code
Simply run:
claude mcp add -s user consult7 uvx -- consult7 your-openrouter-api-key
Claude Desktop
Add to your Claude Desktop configuration file:
{
"mcpServers": {
"consult7": {
"type": "stdio",
"command": "uvx",
"args": ["consult7", "your-openrouter-api-key"]
}
}
}
Replace your-openrouter-api-key with your actual OpenRouter API key.
No installation required - uvx automatically downloads and runs consult7 in an isolated environment.
Command Line Options
uvx consult7 <api-key> [--test]
<api-key>: Required. Your OpenRouter API key--test: Optional. Test the API connection
The model and mode are specified when calling the tool, not at startup.
Supported Models
Consult7 supports all 500+ models available on OpenRouter. Below are the flagship models with optimized dynamic file size limits:
| Model | Context | Use Case |
|---|---|---|
openai/gpt-5.2 |
400k | Latest GPT, balanced performance |
google/gemini-3-pro-preview |
1M | Flagship reasoning model |
google/gemini-2.5-pro |
1M | Best for complex analysis |
google/gemini-3-flash-preview |
1M | Gemini 3 Flash, ultra fast |
google/gemini-2.5-flash |
1M | Fast, good for most tasks |
anthropic/claude-sonnet-4.5 |
1M | Excellent reasoning |
anthropic/claude-opus-4.5 |
200k | Best quality, slower |
x-ai/grok-4 |
256k | Alternative reasoning model |
x-ai/grok-4-fast |
2M | Largest context window |
Quick mnemonics:
gptt=openai/gpt-5.2+think(latest GPT, deep reasoning)gemt=google/gemini-3-pro-preview+think(Gemini 3 Pro, flagship reasoning)grot=x-ai/grok-4+think(Grok 4, deep reasoning)oput=anthropic/claude-opus-4.5+think(Claude Opus, deep reasoning)opuf=anthropic/claude-opus-4.5+fast(Claude Opus, no reasoning)gemf=google/gemini-3-flash-preview+fast(Gemini 3 Flash, ultra fast)ULTRA= call GEMT, GPTT, GROT, and OPUT IN PARALLEL (4 frontier models for maximum insight)
You can use any OpenRouter model ID (e.g., deepseek/deepseek-r1-0528). See the full model list. File size limits are automatically calculated based on each model's context window.
Performance Modes
fast: No reasoning - quick answers, simple tasksmid: Moderate reasoning - code reviews, bug analysisthink: Maximum reasoning - security audits, complex refactoring
File Specification Rules
- Absolute paths only:
/Users/john/project/src/*.py - Wildcards in filenames only:
/Users/john/project/*.py(not in directory paths) - Extension required with wildcards:
*.pynot* - Mix files and patterns:
["/path/src/*.py", "/path/README.md", "/path/tests/*_test.py"]
Common patterns:
- All Python files:
/path/to/dir/*.py - Test files:
/path/to/tests/*_test.pyor/path/to/tests/test_*.py - Multiple extensions:
["/path/*.js", "/path/*.ts"]
Automatically ignored: __pycache__, .env, secrets.py, .DS_Store, .git, node_modules
Size limits: Dynamic based on model context window (e.g., Grok 4 Fast: ~8MB, GPT-5.2: ~1.5MB)
Tool Parameters
The consultation tool accepts the following parameters:
- files (required): List of absolute file paths or patterns with wildcards in filenames only
- query (required): Your question or instruction for the LLM to process the files
- model (required): The LLM model to use (see Supported Models above)
- mode (required): Performance mode -
fast,mid, orthink - output_file (optional): Absolute path to save the response to a file instead of returning it
- If the file exists, it will be saved with
_updatedsuffix (e.g.,report.md→report_updated.md) - When specified, returns only:
"Result has been saved to /path/to/file" - Useful for generating reports, documentation, or analyses without flooding the agent's context
- If the file exists, it will be saved with
- zdr (optional): Enable Zero Data Retention routing (default:
false)- When
true, routes only to endpoints with ZDR policy (prompts not retained by provider) - ZDR available: Gemini 3 Pro/Flash, Claude Opus 4.5, GPT-5
- Not available: GPT-5.2, Grok 4 (returns error)
- When
Usage Examples
Via MCP in Claude Code
Claude Code will automatically use the tool with proper parameters:
{
"files": ["/Users/john/project/src/*.py"],
"query": "Explain the main architecture",
"model": "google/gemini-3-flash-preview",
"mode": "fast"
}
Via Python API
from consult7.consultation import consultation_impl
result = await consultation_impl(
files=["/path/to/file.py"],
query="Explain this code",
model="google/gemini-3-flash-preview",
mode="fast", # fast, mid, or think
provider="openrouter",
api_key="sk-or-v1-..."
)
Testing
# Test OpenRouter connection
uvx consult7 sk-or-v1-your-api-key --test
Uninstalling
To remove consult7 from Claude Code:
claude mcp remove consult7 -s user
Version History
v3.3.0
- Fixed GPT-5.2 thinking mode truncation issue (switched to streaming)
- Added
google/gemini-3-flash-preview(Gemini 3 Flash, ultra fast) - Updated
gemfmnemonic to use Gemini 3 Flash - Added
zdrparameter for Zero Data Retention routing
v3.2.0
- Updated to GPT-5.2 with effort-based reasoning
v3.1.0
- Added
google/gemini-3-pro-preview(1M context, flagship reasoning model) - New mnemonics:
gemt(Gemini 3 Pro),grot(Grok 4),ULTRA(parallel execution)
v3.0.0
- Removed Google and OpenAI direct providers - now OpenRouter only
- Removed
|thinkingsuffix - usemodeparameter instead (now required) - Clean
modeparameter API:fast,mid,think - Simplified CLI from
consult7 <provider> <key>toconsult7 <key> - Better MCP integration with enum validation for modes
- Dynamic file size limits based on model context window
v2.1.0
- Added
output_fileparameter to save responses to files
v2.0.0
- New file list interface with simplified validation
- Reduced file size limits to realistic values
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。