
Container MCP Server
Enables weather lookups, mathematical calculations, and context-aware operations through a containerized MCP server with HTTP transport. Optimized for Docker/Kubernetes deployment with health checks and no external dependencies.
README
Container MCP Server
A Model Context Protocol (MCP) server designed for containerized deployment with HTTP transport. This server provides simple, dependency-free tools and prompts that can be used by MCP clients via streamable HTTP transport.
Features
- HTTP Transport: Uses streamable HTTP transport for remote MCP server deployment
- Container Ready: Optimized for Docker/Kubernetes deployment with health checks
- Simple Tools: Weather data, mathematical calculations, and context-aware operations
- Prompts: Reusable templates for weather reports and calculations
- No External Dependencies: Mock data for easy testing and demonstration
Tools
1. get_weather
Get mock weather information for a city.
Parameters:
city
(string, optional): City name (default: "San Francisco")
Returns: Weather data including temperature, condition, and humidity
2. sum_numbers
Add two numbers together.
Parameters:
a
(float): First numberb
(float): Second number
Returns: The sum of the two numbers
3. context_info
Demonstrate MCP context capabilities including logging, progress reporting, and metadata access.
Parameters:
message
(string): A message to processctx
(Context): MCP Context object (automatically injected)
Returns: Information about the context and processing
Prompts
1. weather_report
Generate weather report prompts for specified cities.
Arguments:
city
(string): City name for the weather reportformat
(string): Report format ("brief", "detailed", or "forecast")
2. calculation_helper
Generate prompts for mathematical calculations.
Arguments:
operation
(string): Type of mathematical operationcontext
(string): Additional context for the calculation
Installation & Development
Using Virtual Environment (Recommended)
-
Create and activate virtual environment:
# Create virtual environment python -m venv venv # Activate virtual environment # On Unix/macOS: source venv/bin/activate # On Windows: # venv\Scripts\activate
-
Install dependencies:
pip install -r requirements.txt
-
Run in development mode:
python -m src.server --port 8000 --log-level DEBUG
-
Run tests:
pytest
-
Deactivate virtual environment when done:
deactivate
Without Virtual Environment (Not Recommended)
-
Install dependencies:
pip install -r requirements.txt
-
Run in development mode:
python -m src.server --port 8000 --log-level DEBUG
-
Run tests:
pytest
Direct Execution
The server supports direct execution for development and testing:
# Basic execution
python src/server.py
# With custom options
python src/server.py --port 3000 --log-level DEBUG --json-response
Command-line options:
--port
: Port to run the server on (default: 8000)--log-level
: Logging level (default: INFO)--json-response
: Use JSON responses instead of SSE streams
Container Deployment
Docker
-
Build the container:
docker build -t mcp-server .
-
Run the container:
docker run -p 8000:8000 mcp-server
-
With custom environment:
docker run -p 8000:8000 -e LOG_LEVEL=DEBUG mcp-server
Docker Compose
-
Basic deployment:
docker-compose up
-
With production nginx proxy:
docker-compose --profile production up
Kubernetes
Example deployment:
apiVersion: apps/v1
kind: Deployment
metadata:
name: mcp-server
spec:
replicas: 3
selector:
matchLabels:
app: mcp-server
template:
metadata:
labels:
app: mcp-server
spec:
containers:
- name: mcp-server
image: mcp-server:latest
ports:
- containerPort: 8000
livenessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 30
periodSeconds: 10
---
apiVersion: v1
kind: Service
metadata:
name: mcp-service
spec:
selector:
app: mcp-server
ports:
- port: 80
targetPort: 8000
type: LoadBalancer
API Endpoints
Health Check
- URL:
GET /health
- Response: Server health status and metadata
- Use: Container orchestration health checks
Server Info
- URL:
GET /
- Response: Server information, available tools, and prompts
- Use: Discovery and documentation
MCP Endpoint
- URL:
POST /mcp
- Protocol: MCP over HTTP (JSON-RPC 2.0)
- Transport: Streamable HTTP with SSE support
- Use: MCP client connections
Connection Details
For MCP Clients
Server URL: http://localhost:8000/mcp
Transport: Streamable HTTP
Authentication: None (can be extended)
Example Client Connection (Python)
import asyncio
from mcp import ClientSession
from mcp.client.streamable_http import streamablehttp_client
async def main():
async with streamablehttp_client("http://localhost:8000/mcp") as (read, write, _):
async with ClientSession(read, write) as session:
await session.initialize()
# List available tools
tools = await session.list_tools()
print(f"Available tools: {[tool.name for tool in tools.tools]}")
# Call a tool
result = await session.call_tool("get_weather", {"city": "New York"})
print(f"Weather result: {result}")
if __name__ == "__main__":
asyncio.run(main())
Testing
Unit Tests
pytest tests/
Integration Tests
# Start the server
python -m src.server --port 8001 &
SERVER_PID=$!
# Test health endpoint
curl http://localhost:8001/health
# Test server info
curl http://localhost:8001/
# Test MCP connection with a client
# (see example above)
# Cleanup
kill $SERVER_PID
Container Tests
# Test container build
docker build -t mcp-server-test .
# Test container run
docker run -d -p 8002:8000 --name mcp-test mcp-server-test
# Test health check
curl http://localhost:8002/health
# Cleanup
docker stop mcp-test && docker rm mcp-test
Monitoring
Health Checks
The server provides a /health
endpoint that returns:
- Server status
- Tool and prompt counts
- Transport information
Logging
Structured logging with configurable levels:
# Set log level via environment
export LOG_LEVEL=DEBUG
python -m src.server
# Or via command line
python -m src.server --log-level DEBUG
Metrics
For production deployments, consider adding:
- Prometheus metrics endpoint
- OpenTelemetry tracing
- Request/response logging
Architecture
┌─────────────────┐ HTTP/SSE ┌─────────────────┐
│ MCP Client │ ◄──────────────► │ MCP Server │
│ │ │ │
│ - Claude Code │ │ - Tools │
│ - Custom Client │ │ - Prompts │
│ - Web App │ │ - Health Check │
└─────────────────┘ └─────────────────┘
│
▼
┌─────────────────┐
│ Container │
│ │
│ - Docker │
│ - Kubernetes │
│ - Cloud Run │
└─────────────────┘
Security Considerations
- The server runs as a non-root user in containers
- No secrets or API keys are required for basic functionality
- Consider adding authentication for production deployments
- Network policies should restrict access to necessary ports only
Contributing
- Fork the repository
- Create a feature branch
- Make changes with tests
- Run the test suite
- Submit a pull request
License
This project is available under the MIT License.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。