Content & Image Generation MCP Server
AI-powered content and image generation server with Google Imagen 3/4 for images, Veo 2/3 for videos, and Claude/Gemini for marketing copywriting, including batch processing, cost estimation, and campaign planning tools.
README
Content & Image Generation MCP Server
AI-powered content and image generation FastMCP server with Google Imagen 3/4 image generation, Veo 2/3 video generation, and Claude/Gemini content generation.
Production Ready: Deploy to FastMCP Cloud in 5 minutes!
Quick Links
- 5-Minute Deployment Guide - Get started fast
- Complete Deployment Guide - Detailed instructions
- Deployment Checklist - Ensure nothing is missed
Features
Tools
-
health_check - Server health and monitoring
- Verify server health and API connectivity
- Check service availability (Google AI, Anthropic)
- Output directory validation
- Perfect for monitoring deployments
-
generate_image_imagen3 - Generate high-quality marketing images
- Google Imagen 3/4 integration
- Multiple aspect ratios (1:1, 16:9, 9:16, 4:3, 3:4)
- 1K and 2K resolution options
- Negative prompts for better control
- Production-ready with error handling
-
batch_generate_images - Generate multiple images efficiently
- Batch processing for campaigns
- Cost tracking across multiple images
- Consistent quality and style
- Detailed success/failure reporting
-
generate_video_veo3 - Create marketing videos
- Google Veo 3 integration
- Customizable duration (4, 6, 8 seconds)
- 720p and 1080p resolution
- Native audio generation
- Cost estimation per second
-
generate_marketing_content - AI-powered copywriting
- Multiple content types (social posts, blog intros, ad copy, email subjects, product descriptions)
- Choice of Claude Sonnet 4 or Gemini 2.5 Flash Image
- Tone customization (professional, casual, enthusiastic, formal)
- Length control (short, medium, long)
- Optional hashtag generation
-
calculate_cost_estimate - Campaign budget planning
- Detailed cost breakdown by service
- Support for multiple models
- Per-resource pricing
- Campaign planning assistant
Resources
- config://pricing - Current pricing for all services
- config://models - Available AI models and capabilities
Prompts
- campaign_planner - Interactive campaign planning assistant
- image_prompt_enhancer - Optimize image generation prompts
Prerequisites
- Python 3.10+ (required for FastMCP)
- uv or pip package manager
- Google Cloud Account with Vertex AI API enabled
- Anthropic API Key (for Claude content generation)
- Google AI API Key (for Gemini content generation)
Installation
1. Clone or Navigate to Project
cd marketing-automation
2. Create Virtual Environment
Using uv (recommended):
uv venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
Or using standard Python:
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
3. Install Dependencies
Using uv:
uv pip install -e .
Or using pip:
pip install -e .
For development with testing tools:
uv pip install -e ".[dev]"
Configuration
1. Set Up Google Cloud
- Create a Google Cloud project at https://console.cloud.google.com
- Enable the Vertex AI API
- Create a service account with Vertex AI permissions
- Download the service account key JSON file
- Set the path to your credentials file
2. Get API Keys
- Anthropic: Get your API key from https://console.anthropic.com
- Google AI: Get your API key from https://makersuite.google.com/app/apikey
3. Create Environment File
Copy the example environment file:
cp .env.example .env
Edit .env with your configuration:
# Google Cloud Configuration
GOOGLE_CLOUD_PROJECT=your-project-id
GOOGLE_CLOUD_LOCATION=us-central1
GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account-key.json
# Anthropic API Configuration
ANTHROPIC_API_KEY=sk-ant-api03-your-key-here
# Google Generative AI (Gemini)
GOOGLE_API_KEY=your-google-ai-api-key
# Server Configuration
MCP_SERVER_NAME=Marketing Automation
MCP_SERVER_PORT=8000
Important: Never commit the .env file with real credentials!
Usage
Local Development (STDIO for Claude Desktop)
Run the server in STDIO mode:
python server.py
Or using FastMCP CLI:
fastmcp run server.py
HTTP Server for Deployment
Run the server in HTTP mode:
python server.py --http
The server will start on http://0.0.0.0:8000
Claude Desktop Integration
Add to your Claude Desktop config file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"marketing-automation": {
"command": "python",
"args": [
"/absolute/path/to/marketing-automation/server.py"
],
"env": {
"GOOGLE_CLOUD_PROJECT": "your-project-id",
"GOOGLE_CLOUD_LOCATION": "us-central1",
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/service-account-key.json",
"ANTHROPIC_API_KEY": "sk-ant-api03-your-key",
"GOOGLE_API_KEY": "your-google-ai-key"
}
}
}
}
Note: Use absolute paths for both the server script and credentials file.
Example Usage
Generate a Marketing Image
# Via Claude Desktop or MCP client
generate_image_imagen3(
prompt="Professional product photography of a luxury watch, white background, studio lighting, high detail, commercial quality",
aspect_ratio="1:1",
quality="hd"
)
Batch Generate Images for Campaign
batch_generate_images(
prompts=[
"Modern tech startup office, collaborative workspace, natural light",
"Smartphone app interface, clean design, user-friendly",
"Happy customers using product, lifestyle photography"
],
quality="hd",
aspect_ratio="16:9"
)
Generate Marketing Copy
generate_marketing_content(
content_type="social_post",
topic="Launch of new AI-powered analytics platform",
tone="enthusiastic",
length="medium",
model="claude",
include_hashtags=True
)
Estimate Campaign Costs
calculate_cost_estimate(
images_hd=10,
images_sd=20,
video_seconds=30,
content_pieces=15
)
Pricing
Approximate costs (as of October 2025):
| Service | Cost |
|---|---|
| Imagen 3 SD | $0.020 per image |
| Imagen 3 HD | $0.040 per image |
| Imagen 4 SD | $0.025 per image |
| Imagen 4 HD | $0.050 per image |
| Veo 2 | $0.15 per second |
| Veo 3 | $0.20 per second |
| Claude Sonnet | $0.003 per 1K tokens |
| Gemini Pro | $0.0005 per 1K tokens |
Use calculate_cost_estimate tool for detailed budget planning.
Output Directory
Generated content is saved to the output/ directory:
- Images:
output/imagen3_YYYYMMDD_HHMMSS.png - Videos:
output/veo3_YYYYMMDD_HHMMSS.mp4
Security Best Practices
- Never hardcode API keys - Always use environment variables
- Use .env for local development - Never commit
.envto git - Rotate credentials regularly - Especially for production use
- Set up cost alerts - Monitor Google Cloud and Anthropic usage
- Use service accounts with minimal permissions - Follow principle of least privilege
Deployment
FastMCP Cloud (Recommended)
Quick Deployment: Deploy to production in 5 minutes!
- Visit: https://cloud.fastmcp.com
- Sign in with GitHub
- Create new project:
- Repository:
vanman2024/content-image-generation-mcp - Entrypoint:
server.py:mcp
- Repository:
- Set environment variable:
GOOGLE_API_KEY=<your-key> - Deploy
Your server will be available at:
https://content-image-generation-mcp.fastmcp.app/mcp
Full Documentation:
- Quick Start Guide - 5-minute deployment
- Complete Deployment Guide - Detailed instructions
- Deployment Checklist - Step-by-step checklist
Validation (optional but recommended):
./scripts/validate-deployment.sh
Production Features
Your deployment includes:
- ✅ Structured logging with configurable levels
- ✅ Health check endpoint for monitoring
- ✅ Error handling and API validation
- ✅ Automatic redeployment on git push
- ✅ Zero-downtime deployments
- ✅ Cost tracking and estimation
IDE Integration
After deploying, connect from your IDE:
Claude Desktop (claude_desktop_config.json):
{
"mcpServers": {
"content-image-generation": {
"url": "https://content-image-generation-mcp.fastmcp.app/mcp",
"transport": "sse"
}
}
}
Cursor (.cursor/mcp_config.json):
{
"mcpServers": {
"content-image-generation": {
"url": "https://content-image-generation-mcp.fastmcp.app/mcp",
"transport": "sse"
}
}
}
Alternative Deployment Options
Local Development (STDIO):
python server.py
# or
fastmcp run server.py
HTTP Server:
python server.py --http
# Server runs on http://0.0.0.0:8000
Docker:
FROM python:3.10-slim
WORKDIR /app
COPY . .
RUN pip install -r requirements.txt
ENV GOOGLE_API_KEY=""
CMD ["python", "server.py", "--http"]
Build and run:
docker build -t content-image-generation-mcp .
docker run -p 8000:8000 -e GOOGLE_API_KEY=your_key content-image-generation-mcp
Troubleshooting
Import Errors
# Reinstall dependencies
uv pip install --force-reinstall -e .
Google Cloud Authentication
# Verify credentials
gcloud auth application-default login
# Check project
gcloud config get-value project
API Key Issues
# Verify environment variables are loaded
python -c "import os; from dotenv import load_dotenv; load_dotenv(); print(os.getenv('ANTHROPIC_API_KEY'))"
Development
Run Tests
pytest tests/
Code Formatting
black server.py
ruff check server.py
Add New Tools
Follow FastMCP patterns:
@mcp.tool()
def my_new_tool(param: str) -> Dict[str, Any]:
"""Tool description for LLM"""
return {"success": True, "result": param}
Resources
- FastMCP Documentation: https://gofastmcp.com
- Google Vertex AI: https://cloud.google.com/vertex-ai/docs
- Anthropic Claude: https://docs.anthropic.com
- Google Gemini: https://ai.google.dev
Support
For issues or questions:
- Check the FastMCP documentation
- Review Google Cloud Vertex AI docs
- Verify API credentials and quotas
- Check the
output/directory for generated files
License
Apache 2.0
Built with FastMCP 2.13.0 - The fast, Pythonic way to build MCP servers.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。