Content Fetcher MCP
Fetches and tracks content from YouTube channels, RSS feeds, and GitHub releases with persistence to identify new items across sessions.
README
Content Fetcher MCP
This MCP server fetches content from various sources including YouTube, RSS feeds, and GitHub releases. It's designed to work with Goose to help track and identify new content.
Features
- YouTube: Fetches videos from the Goose YouTube channel
- RSS Feeds: Fetches blog posts from any RSS feed (including the Goose blog)
- GitHub Releases: Fetches releases from the Block/Goose repository
- Content Tracking: Tracks seen content to identify new items
- Cross-machine Persistence: Stores tracking data in
~/.config/goose/content-fetcher-mcp/
Setup
-
Ensure you have Node.js installed (version 14 or higher recommended).
-
Install dependencies:
npm install -
Build the project:
npm run build
Running the MCP Server
This is an MCP server that uses stdio transport and is designed to be registered with Goose.
To start the server directly:
npm start
For development with auto-reload:
npm run dev
Registering with Goose
To register this MCP server with Goose, add it to your Goose configuration. The server uses stdio transport, so it should be configured as a local MCP server in your Goose settings.
Available Tools
1. fetchYoutube
Fetches ALL videos from the Goose YouTube channel.
Parameters: None
Returns: Array of video objects with id, title, url, published_at, and type: "video"
2. fetchRss
Fetches ALL blog posts from any RSS feed.
Parameters:
url(string): RSS feed URL
Returns: Array of blog post objects with id, title, url, published_at, and type: "blog"
3. fetchGooseBlog
Fetches ALL blog posts from the official Goose blog.
Parameters: None
Returns: Array of blog post objects with id, title, url, published_at, and type: "blog"
4. fetchGithubReleases
Fetches ALL releases from the Block/Goose GitHub repository.
Parameters: None
Returns: Array of release objects with id, title, url, published_at, and type: "release"
5. isNewContent
Checks if a content item has been seen before.
Parameters:
id(string): Unique identifier for the contenttype(enum): One of"youtube","blog", or"release"
Returns: { "is_new": true/false }
6. markContentSeen
Marks a content item as seen (typically after posting).
Parameters:
id(string): Unique identifier for the contenttype(enum): One of"youtube","blog", or"release"
Returns: { "success": true }
How It Works
- Fetching: The fetch tools retrieve all available content from their respective sources
- Filtering: Use
isNewContentto check if an item hasn't been seen before - Tracking: After processing new content, use
markContentSeento mark it as seen - Persistence: Seen content is stored in
~/.config/goose/content-fetcher-mcp/last_seen.json
Example Workflow
// 1. Fetch all YouTube videos
const videos = await fetchYoutube();
// 2. Check which ones are new
for (const video of videos) {
const result = await isNewContent({ id: video.id, type: "youtube" });
if (result.is_new) {
// Process the new video...
// 3. Mark as seen after processing
await markContentSeen({ id: video.id, type: "youtube" });
}
}
Configuration
The server is pre-configured with:
- YouTube Channel: Goose channel (
UCVLuT_AS687XAJ__-COCRFw) - Goose Blog RSS:
https://block.github.io/goose/blog/rss.xml - GitHub Repository:
block/goose
To customize these, edit the constants in src/server.ts.
Notes
- The server uses stdio transport, making it suitable for local MCP integration with Goose
- Content tracking is persistent across restarts via the
last_seen.jsonfile - All fetch operations return the complete list of content; filtering for "new" items is done separately via
isNewContent
Future Improvements
- Add configuration file support for customizing channels, feeds, and repositories
- Implement rate limiting and caching to optimize API usage
- Add more detailed logging and error handling
- Support for additional content sources
- Batch operations for checking multiple items at once
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。