Content Fetcher MCP

Content Fetcher MCP

Fetches and tracks content from YouTube channels, RSS feeds, and GitHub releases with persistence to identify new items across sessions.

Category
访问服务器

README

Content Fetcher MCP

This MCP server fetches content from various sources including YouTube, RSS feeds, and GitHub releases. It's designed to work with Goose to help track and identify new content.

Features

  • YouTube: Fetches videos from the Goose YouTube channel
  • RSS Feeds: Fetches blog posts from any RSS feed (including the Goose blog)
  • GitHub Releases: Fetches releases from the Block/Goose repository
  • Content Tracking: Tracks seen content to identify new items
  • Cross-machine Persistence: Stores tracking data in ~/.config/goose/content-fetcher-mcp/

Setup

  1. Ensure you have Node.js installed (version 14 or higher recommended).

  2. Install dependencies:

    npm install
    
  3. Build the project:

    npm run build
    

Running the MCP Server

This is an MCP server that uses stdio transport and is designed to be registered with Goose.

To start the server directly:

npm start

For development with auto-reload:

npm run dev

Registering with Goose

To register this MCP server with Goose, add it to your Goose configuration. The server uses stdio transport, so it should be configured as a local MCP server in your Goose settings.

Available Tools

1. fetchYoutube

Fetches ALL videos from the Goose YouTube channel.

Parameters: None

Returns: Array of video objects with id, title, url, published_at, and type: "video"

2. fetchRss

Fetches ALL blog posts from any RSS feed.

Parameters:

  • url (string): RSS feed URL

Returns: Array of blog post objects with id, title, url, published_at, and type: "blog"

3. fetchGooseBlog

Fetches ALL blog posts from the official Goose blog.

Parameters: None

Returns: Array of blog post objects with id, title, url, published_at, and type: "blog"

4. fetchGithubReleases

Fetches ALL releases from the Block/Goose GitHub repository.

Parameters: None

Returns: Array of release objects with id, title, url, published_at, and type: "release"

5. isNewContent

Checks if a content item has been seen before.

Parameters:

  • id (string): Unique identifier for the content
  • type (enum): One of "youtube", "blog", or "release"

Returns: { "is_new": true/false }

6. markContentSeen

Marks a content item as seen (typically after posting).

Parameters:

  • id (string): Unique identifier for the content
  • type (enum): One of "youtube", "blog", or "release"

Returns: { "success": true }

How It Works

  1. Fetching: The fetch tools retrieve all available content from their respective sources
  2. Filtering: Use isNewContent to check if an item hasn't been seen before
  3. Tracking: After processing new content, use markContentSeen to mark it as seen
  4. Persistence: Seen content is stored in ~/.config/goose/content-fetcher-mcp/last_seen.json

Example Workflow

// 1. Fetch all YouTube videos
const videos = await fetchYoutube();

// 2. Check which ones are new
for (const video of videos) {
  const result = await isNewContent({ id: video.id, type: "youtube" });
  if (result.is_new) {
    // Process the new video...
    
    // 3. Mark as seen after processing
    await markContentSeen({ id: video.id, type: "youtube" });
  }
}

Configuration

The server is pre-configured with:

  • YouTube Channel: Goose channel (UCVLuT_AS687XAJ__-COCRFw)
  • Goose Blog RSS: https://block.github.io/goose/blog/rss.xml
  • GitHub Repository: block/goose

To customize these, edit the constants in src/server.ts.

Notes

  • The server uses stdio transport, making it suitable for local MCP integration with Goose
  • Content tracking is persistent across restarts via the last_seen.json file
  • All fetch operations return the complete list of content; filtering for "new" items is done separately via isNewContent

Future Improvements

  1. Add configuration file support for customizing channels, feeds, and repositories
  2. Implement rate limiting and caching to optimize API usage
  3. Add more detailed logging and error handling
  4. Support for additional content sources
  5. Batch operations for checking multiple items at once

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选