
context-awesome
Give your AI agents access to 8,500+ community curated awesome lists with over 1 million curated resources.
README
context-awesome : awesome references for your agents
A Model Context Protocol (MCP) server that provides access to all the curated awesome lists and their items. It can provide the best resources for your agent from sections of the 8500+ awesome lists on github and more then 1mn+ (growing) awesome row items.
What are Awesome Lists? Awesome lists are community-curated collections of the best tools, libraries, and resources on any topic - from machine learning frameworks to design tools. By adding this MCP server, your AI agents get instant access to these high-quality, vetted resources instead of relying on random web searches.
Perfect for :
- Knowledge worker agents to get the most relevant references for their work
- The source for the best learning resources
- Deep research can quickly gather a lot of high quality resources for any topic.
- Search agents
https://github.com/user-attachments/assets/babab991-e4ff-4433-bdb7-eb7032e9cd11
Available Tools
1. find_awesome_section
Discovers sections and categories across awesome lists matching your search query.
Parameters:
query
(required): Search terms for finding sectionsconfidence
(optional): Minimum confidence score (0-1, default: 0.3)limit
(optional): Maximum sections to return (1-50, default: 10)
Example Usage: "Give me the best machine learning resources for learning ML related to python in couple of months." "What are the best resources for authoring technical books ?" "Find awesome list sections about React hooks" "Search for database ORMs in Go awesome lists"
2. get_awesome_items
Retrieves items from a specific list or section with token limiting for optimal context usage.
Parameters:
listId
orgithubRepo
(one required): Identifier for the listsection
(optional): Category/section name to filtersubcategory
(optional): Subcategory to filtertokens
(optional): Maximum tokens to return (min: 1000, default: 10000)offset
(optional): Pagination offset (default: 0)
Example Usage:
"Show me the testing tools section from awesome-rust"
"Get the next 20 items from awesome-python (offset: 20)"
"Get items from bh-rat/awesome-mcp-enterprise"
Installation
Remote Server (Recommended)
Context Awesome is available as a hosted MCP server. No installation required!
<details> <summary><b>Install in Cursor</b></summary>
Go to: Settings
-> Cursor Settings
-> MCP
-> Add new global MCP server
{
"mcpServers": {
"context-awesome": {
"url": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
<details> <summary><b>Install in Claude Code</b></summary>
claude mcp add --transport http context-awesome https://www.context-awesome.com/api/mcp
</details>
<details> <summary><b>Install in Windsurf</b></summary>
{
"mcpServers": {
"context-awesome": {
"serverUrl": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
<details> <summary><b>Install in VS Code</b></summary>
"mcp": {
"servers": {
"context-awesome": {
"type": "http",
"url": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
<details> <summary><b>Install in Claude Desktop</b></summary>
Navigate to Settings > Connectors > Add Custom Connector. Enter:
- Name:
Context Awesome
- URL:
https://www.context-awesome.com/api/mcp
</details>
See Additional Installation Methods for other MCP clients.
Local Setup
For development or self-hosting:
git clone https://github.com/bh-rat/context-awesome.git
cd context-awesome
npm install
npm run build
Configuration
Running the Server
# Development mode (runs from source)
npm run dev -- [options]
# Production mode (runs compiled version)
npm run start -- [options]
Options:
--transport <stdio|http|sse> Transport mechanism (default: stdio)
--port <number> Port for HTTP transport (default: 3000)
--api-host <url> Backend API host (default: https://api.context-awesome.com)
--debug Enable debug logging
--help Show help
Examples
# Run with default settings (stdio transport)
npm run start
# Run with HTTP transport on port 3001
npm run start -- --transport http --port 3001
# Run with custom API host and key
npm run start -- --api-host https://api.context-awesome.com
MCP Client Configuration
<details> <summary><b>Claude Desktop</b></summary>
Add to your Claude Desktop configuration file:
{
"mcpServers": {
"context-awesome": {
"command": "node",
"args": ["/path/to/context-awesome/build/index.js"],
"env": {
"CONTEXT_AWESOME_API_HOST": "https://api.context-awesome.com"
}
}
}
}
</details>
<details> <summary><b>Cursor/VS Code</b></summary>
Add to your settings:
{
"mcpServers": {
"context-awesome": {
"command": "node",
"args": ["/path/to/context-awesome/build/index.js"],
"env": {
"CONTEXT_AWESOME_API_HOST": "https://api.context-awesome.com"
}
}
}
}
</details>
<details> <summary><b>Custom Integration</b></summary>
For HTTP transport:
npm run start -- --transport http --port 3001 --api-host https://api.context-awesome.com
Then configure your client to connect to http://localhost:3001/mcp
</details>
Testing
With MCP Inspector
npm run inspector
Debug Mode
Enable debug logging to see detailed information:
npm run start -- --debug
# Or in development mode
npm run dev -- --debug
Additional Installation Methods
<details> <summary><b>Install in Cline</b></summary>
{
"mcpServers": {
"context-awesome": {
"url": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
<details> <summary><b>Install in Zed</b></summary>
{
"context_servers": {
"context-awesome": {
"url": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
<details> <summary><b>Install in Augment Code</b></summary>
- Click the hamburger menu
- Select Settings
- Navigate to Tools
- Click + Add MCP
- Enter URL:
https://www.context-awesome.com/api/mcp
- Name: Context Awesome </details>
<details> <summary><b>Install in Roo Code</b></summary>
{
"mcpServers": {
"context-awesome": {
"type": "streamable-http",
"url": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
<details> <summary><b>Install in Gemini CLI</b></summary>
{
"mcpServers": {
"context-awesome": {
"httpUrl": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
<details> <summary><b>Install in Opencode</b></summary>
"mcp": {
"context-awesome": {
"type": "remote",
"url": "https://www.context-awesome.com/api/mcp",
"enabled": true
}
}
</details>
<details> <summary><b>Install in JetBrains AI Assistant</b></summary>
- Go to
Settings
->Tools
->AI Assistant
->Model Context Protocol (MCP)
- Click
+ Add
- Configure URL:
https://www.context-awesome.com/api/mcp
- Click
OK
andApply
</details>
<details> <summary><b>Install in Kiro</b></summary>
- Navigate
Kiro
>MCP Servers
- Click
+ Add
- Configure URL:
https://www.context-awesome.com/api/mcp
- Click
Save
</details>
<details> <summary><b>Install in Trae</b></summary>
{
"mcpServers": {
"context-awesome": {
"url": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
<details> <summary><b>Install in Amazon Q Developer CLI</b></summary>
{
"mcpServers": {
"context-awesome": {
"url": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
<details> <summary><b>Install in Warp</b></summary>
- Navigate
Settings
>AI
>Manage MCP servers
- Click
+ Add
- Configure URL:
https://www.context-awesome.com/api/mcp
- Click
Save
</details>
<details> <summary><b>Install in Copilot Coding Agent</b></summary>
{
"mcpServers": {
"context-awesome": {
"type": "http",
"url": "https://www.context-awesome.com/api/mcp",
"tools": ["find_awesome_section", "get_awesome_items"]
}
}
}
</details>
<details> <summary><b>Install in LM Studio</b></summary>
- Navigate to
Program
>Install
>Edit mcp.json
- Add:
{
"mcpServers": {
"context-awesome": {
"url": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
<details> <summary><b>Install in BoltAI</b></summary>
{
"mcpServers": {
"context-awesome": {
"url": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
<details> <summary><b>Install in Perplexity Desktop</b></summary>
- Navigate
Perplexity
>Settings
- Select
Connectors
- Click
Add Connector
- Select
Advanced
- Enter Name:
Context Awesome
- Enter URL:
https://www.context-awesome.com/api/mcp
</details>
<details> <summary><b>Install in Visual Studio 2022</b></summary>
{
"inputs": [],
"servers": {
"context-awesome": {
"type": "http",
"url": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
<details> <summary><b>Install in Crush</b></summary>
{
"$schema": "https://charm.land/crush.json",
"mcp": {
"context-awesome": {
"type": "http",
"url": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
<details> <summary><b>Install in Rovo Dev CLI</b></summary>
acli rovodev mcp
Then add:
{
"mcpServers": {
"context-awesome": {
"url": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
<details> <summary><b>Install in Zencoder</b></summary>
- Go to Zencoder menu (...)
- Select Agent tools
- Click Add custom MCP
- Name:
Context Awesome
- URL:
https://www.context-awesome.com/api/mcp
</details>
<details> <summary><b>Install in Qodo Gen</b></summary>
- Open Qodo Gen chat panel
- Click Connect more tools
- Click + Add new MCP
- Add:
{
"mcpServers": {
"context-awesome": {
"url": "https://www.context-awesome.com/api/mcp"
}
}
}
</details>
Backend service
This MCP server connects to backend API service that handles the heavy lifting of awesome list processing.
The backend service will be open-sourced soon, enabling the community to contribute to and benefit from the complete context-awesome ecosystem.
License
MIT
Contributing
Contributions are welcome! Please:
- Fork the repository
- Create a feature branch
- Add tests for new functionality
- Ensure all tests pass
- Submit a pull request
Support
For issues and questions:
- GitHub Issues: https://github.com/your-org/context-awesome/issues
- Documentation: https://docs.context-awesome.com
Attribution
This project uses data from over 8,500 awesome lists on GitHub. See ATTRIBUTION.md for a complete list of all repositories whose data is included.
Credits
Built with:
- Model Context Protocol SDK
- Awesome Lists
- Inspired by context7 MCP server patterns
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。