context-awesome

context-awesome

Give your AI agents access to 8,500+ community curated awesome lists with over 1 million curated resources.

Category
访问服务器

README

context-awesome : awesome references for your agents

MCP Server

A Model Context Protocol (MCP) server that provides access to all the curated awesome lists and their items. It can provide the best resources for your agent from sections of the 8500+ awesome lists on github and more then 1mn+ (growing) awesome row items.

What are Awesome Lists? Awesome lists are community-curated collections of the best tools, libraries, and resources on any topic - from machine learning frameworks to design tools. By adding this MCP server, your AI agents get instant access to these high-quality, vetted resources instead of relying on random web searches.

Perfect for :

  1. Knowledge worker agents to get the most relevant references for their work
  2. The source for the best learning resources
  3. Deep research can quickly gather a lot of high quality resources for any topic.
  4. Search agents

https://github.com/user-attachments/assets/babab991-e4ff-4433-bdb7-eb7032e9cd11

Available Tools

1. find_awesome_section

Discovers sections and categories across awesome lists matching your search query.

Parameters:

  • query (required): Search terms for finding sections
  • confidence (optional): Minimum confidence score (0-1, default: 0.3)
  • limit (optional): Maximum sections to return (1-50, default: 10)

Example Usage: "Give me the best machine learning resources for learning ML related to python in couple of months." "What are the best resources for authoring technical books ?" "Find awesome list sections about React hooks" "Search for database ORMs in Go awesome lists"

2. get_awesome_items

Retrieves items from a specific list or section with token limiting for optimal context usage.

Parameters:

  • listId or githubRepo (one required): Identifier for the list
  • section (optional): Category/section name to filter
  • subcategory (optional): Subcategory to filter
  • tokens (optional): Maximum tokens to return (min: 1000, default: 10000)
  • offset (optional): Pagination offset (default: 0)

Example Usage:

"Show me the testing tools section from awesome-rust"
"Get the next 20 items from awesome-python (offset: 20)"
"Get items from bh-rat/awesome-mcp-enterprise"

Installation

Remote Server (Recommended)

Context Awesome is available as a hosted MCP server. No installation required!

<details> <summary><b>Install in Cursor</b></summary>

Go to: Settings -> Cursor Settings -> MCP -> Add new global MCP server

{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

<details> <summary><b>Install in Claude Code</b></summary>

claude mcp add --transport http context-awesome https://www.context-awesome.com/api/mcp

</details>

<details> <summary><b>Install in Windsurf</b></summary>

{
  "mcpServers": {
    "context-awesome": {
      "serverUrl": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

<details> <summary><b>Install in VS Code</b></summary>

"mcp": {
  "servers": {
    "context-awesome": {
      "type": "http",
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

<details> <summary><b>Install in Claude Desktop</b></summary>

Navigate to Settings > Connectors > Add Custom Connector. Enter:

  • Name: Context Awesome
  • URL: https://www.context-awesome.com/api/mcp </details>

See Additional Installation Methods for other MCP clients.

Local Setup

For development or self-hosting:

git clone https://github.com/bh-rat/context-awesome.git
cd context-awesome
npm install
npm run build

Configuration

Running the Server

# Development mode (runs from source)
npm run dev -- [options]

# Production mode (runs compiled version)
npm run start -- [options]

Options:
  --transport <stdio|http|sse>  Transport mechanism (default: stdio)
  --port <number>               Port for HTTP transport (default: 3000)
  --api-host <url>             Backend API host (default: https://api.context-awesome.com)
  --debug                      Enable debug logging
  --help                       Show help

Examples

# Run with default settings (stdio transport)
npm run start

# Run with HTTP transport on port 3001
npm run start -- --transport http --port 3001

# Run with custom API host and key
npm run start -- --api-host https://api.context-awesome.com

MCP Client Configuration

<details> <summary><b>Claude Desktop</b></summary>

Add to your Claude Desktop configuration file:

{
  "mcpServers": {
    "context-awesome": {
      "command": "node",
      "args": ["/path/to/context-awesome/build/index.js"],
      "env": {
        "CONTEXT_AWESOME_API_HOST": "https://api.context-awesome.com"
      }
    }
  }
}

</details>

<details> <summary><b>Cursor/VS Code</b></summary>

Add to your settings:

{
  "mcpServers": {
    "context-awesome": {
      "command": "node",
      "args": ["/path/to/context-awesome/build/index.js"],
      "env": {
        "CONTEXT_AWESOME_API_HOST": "https://api.context-awesome.com"
      }
    }
  }
}

</details>

<details> <summary><b>Custom Integration</b></summary>

For HTTP transport:

npm run start -- --transport http --port 3001 --api-host https://api.context-awesome.com

Then configure your client to connect to http://localhost:3001/mcp </details>

Testing

With MCP Inspector

npm run inspector

Debug Mode

Enable debug logging to see detailed information:

npm run start -- --debug

# Or in development mode
npm run dev -- --debug

Additional Installation Methods

<details> <summary><b>Install in Cline</b></summary>

{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

<details> <summary><b>Install in Zed</b></summary>

{
  "context_servers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

<details> <summary><b>Install in Augment Code</b></summary>

  1. Click the hamburger menu
  2. Select Settings
  3. Navigate to Tools
  4. Click + Add MCP
  5. Enter URL: https://www.context-awesome.com/api/mcp
  6. Name: Context Awesome </details>

<details> <summary><b>Install in Roo Code</b></summary>

{
  "mcpServers": {
    "context-awesome": {
      "type": "streamable-http",
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

<details> <summary><b>Install in Gemini CLI</b></summary>

{
  "mcpServers": {
    "context-awesome": {
      "httpUrl": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

<details> <summary><b>Install in Opencode</b></summary>

"mcp": {
  "context-awesome": {
    "type": "remote",
    "url": "https://www.context-awesome.com/api/mcp",
    "enabled": true
  }
}

</details>

<details> <summary><b>Install in JetBrains AI Assistant</b></summary>

  1. Go to Settings -> Tools -> AI Assistant -> Model Context Protocol (MCP)
  2. Click + Add
  3. Configure URL: https://www.context-awesome.com/api/mcp
  4. Click OK and Apply </details>

<details> <summary><b>Install in Kiro</b></summary>

  1. Navigate Kiro > MCP Servers
  2. Click + Add
  3. Configure URL: https://www.context-awesome.com/api/mcp
  4. Click Save </details>

<details> <summary><b>Install in Trae</b></summary>

{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

<details> <summary><b>Install in Amazon Q Developer CLI</b></summary>

{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

<details> <summary><b>Install in Warp</b></summary>

  1. Navigate Settings > AI > Manage MCP servers
  2. Click + Add
  3. Configure URL: https://www.context-awesome.com/api/mcp
  4. Click Save </details>

<details> <summary><b>Install in Copilot Coding Agent</b></summary>

{
  "mcpServers": {
    "context-awesome": {
      "type": "http",
      "url": "https://www.context-awesome.com/api/mcp",
      "tools": ["find_awesome_section", "get_awesome_items"]
    }
  }
}

</details>

<details> <summary><b>Install in LM Studio</b></summary>

  1. Navigate to Program > Install > Edit mcp.json
  2. Add:
{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

<details> <summary><b>Install in BoltAI</b></summary>

{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

<details> <summary><b>Install in Perplexity Desktop</b></summary>

  1. Navigate Perplexity > Settings
  2. Select Connectors
  3. Click Add Connector
  4. Select Advanced
  5. Enter Name: Context Awesome
  6. Enter URL: https://www.context-awesome.com/api/mcp </details>

<details> <summary><b>Install in Visual Studio 2022</b></summary>

{
  "inputs": [],
  "servers": {
    "context-awesome": {
      "type": "http",
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

<details> <summary><b>Install in Crush</b></summary>

{
  "$schema": "https://charm.land/crush.json",
  "mcp": {
    "context-awesome": {
      "type": "http",
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

<details> <summary><b>Install in Rovo Dev CLI</b></summary>

acli rovodev mcp

Then add:

{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

<details> <summary><b>Install in Zencoder</b></summary>

  1. Go to Zencoder menu (...)
  2. Select Agent tools
  3. Click Add custom MCP
  4. Name: Context Awesome
  5. URL: https://www.context-awesome.com/api/mcp </details>

<details> <summary><b>Install in Qodo Gen</b></summary>

  1. Open Qodo Gen chat panel
  2. Click Connect more tools
  3. Click + Add new MCP
  4. Add:
{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

</details>

Backend service

This MCP server connects to backend API service that handles the heavy lifting of awesome list processing.

The backend service will be open-sourced soon, enabling the community to contribute to and benefit from the complete context-awesome ecosystem.

License

MIT

Contributing

Contributions are welcome! Please:

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Ensure all tests pass
  5. Submit a pull request

Support

For issues and questions:

Attribution

This project uses data from over 8,500 awesome lists on GitHub. See ATTRIBUTION.md for a complete list of all repositories whose data is included.

Credits

Built with:

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选