Context Engineering MCP Platform

Context Engineering MCP Platform

A development platform that helps AI developers optimize prompts through intelligent context management, providing tools for analysis, optimization, and template management to reduce costs and improve AI response quality.

Category
访问服务器

README

🧠 Context Engineering MCP Platform

<div align="center">

License: MIT Python Node.js MCP Compatible Powered by Gemini

<h3>Transform your AI development with intelligent context management, optimization, and prompt engineering</h3>

English | 日本語 | Demo | Quick Start | Docs

<img src="https://github.com/user-attachments/assets/context-engineering-demo.gif" alt="Context Engineering Demo" width="100%" />

</div>


🎯 The Problem We Solve

Every AI developer faces these challenges:

<table> <tr> <td width="50%">

❌ Without Context Engineering

  • 💸 $1000s wasted on inefficient prompts
  • 🐌 3-5x slower response times
  • 📉 40% lower accuracy in outputs
  • 🔄 Endless copy-pasting of prompts
  • 😤 Frustrated users from poor AI responses

</td> <td width="50%">

✅ With Context Engineering

  • 💰 52% cost reduction through optimization
  • 2x faster AI responses
  • 📈 92% quality score improvements
  • 🎯 78% template reuse rate
  • 😊 Happy users with consistent results

</td> </tr> </table>

🌟 What is Context Engineering?

Context Engineering is the systematic approach to designing, managing, and optimizing the information provided to AI models. Think of it as DevOps for AI prompts - bringing engineering rigor to what has traditionally been ad-hoc prompt crafting.

Core Principles

  1. 📊 Measure Everything - Quality scores, token usage, response times
  2. 🔄 Optimize Continuously - AI-powered improvements on every interaction
  3. 📋 Standardize Templates - Reusable components for consistent results
  4. 🎯 Focus on Outcomes - Business metrics, not just technical metrics

🚀 Key Features That Set Us Apart

1. 🧪 AI-Powered Analysis Engine

<details> <summary><b>Click to see how our analysis works</b></summary>

# Traditional approach - manual review
context = "You are an AI assistant. You help users. You are helpful..."
# Developer: "Looks good to me!" 🤷

# Context Engineering approach - AI analysis
analysis = await analyze_context(context)
print(f"Quality Score: {analysis.quality_score}/100")
print(f"Issues Found: {analysis.issues}")
print(f"Recommendations: {analysis.recommendations}")

# Output:
# Quality Score: 65/100
# Issues Found: ['Redundant statements', 'Vague instructions']
# Recommendations: ['Combine role definition', 'Add specific examples']

Our AI analyzer evaluates:

  • Semantic Coherence: How well ideas flow together
  • Information Density: Token efficiency metrics
  • Clarity Score: Readability and understandability
  • Relevance Mapping: How well content matches intent

</details>

2. ⚡ Intelligent Optimization Algorithms

<details> <summary><b>See optimization in action</b></summary>

# Before optimization
original_context = """
You are an AI assistant. You are helpful. You help users with their 
questions. When users ask questions, you provide helpful answers. 
You should be helpful and provide good answers to questions.
"""
# Tokens: 50, Quality: 60/100

# After optimization
optimized_context = """
You are a helpful AI assistant that provides comprehensive, 
accurate answers to user questions.
"""
# Tokens: 15 (70% reduction!), Quality: 85/100

Optimization strategies:

  • 🎯 Token Reduction: Remove redundancy without losing meaning
  • 💎 Clarity Enhancement: Improve instruction precision
  • 🔗 Relevance Boosting: Prioritize important information
  • 📐 Structure Improvement: Logical flow optimization

</details>

3. 📋 Advanced Template Management

<details> <summary><b>Explore our template system</b></summary>

# Create a reusable template
template = create_template(
    name="Customer Support Agent",
    template="""
    You are a {company} support agent with {experience} of experience.
    
    Your responsibilities:
    - {primary_task}
    - {secondary_task}
    
    Communication style: {tone}
    
    Current context: {context}
    """,
    category="support",
    tags=["customer-service", "chatbot"]
)

# Use it across different scenarios
rendered = render_template(template, {
    "company": "TechCorp",
    "experience": "5 years",
    "primary_task": "Resolve technical issues",
    "secondary_task": "Ensure customer satisfaction",
    "tone": "Professional yet friendly",
    "context": "Black Friday sale period"
})

Features:

  • 🤖 AI-Generated Templates: Describe your need, get a template
  • 📊 Usage Analytics: Track which templates work best
  • 🔄 Version Control: Roll back to previous versions
  • 🧪 A/B Testing: Compare template performance

</details>

4. 🌐 Multi-Modal Context Support

<details> <summary><b>Beyond text - full multi-modal support</b></summary>

Handle complex, real-world scenarios:

# Create a multi-modal context
context = create_multimodal_context(
    text="Analyze this product image and create a description",
    images=["product_photo.jpg", "dimension_diagram.png"],
    documents=["product_specs.pdf"],
    metadata={
        "target_audience": "technical buyers",
        "tone": "professional",
        "length": "200-300 words"
    }
)

# Automatic optimization for each modality
optimized = await optimize_multimodal(context)

Supported formats:

  • 📝 Text: Markdown, plain text, code
  • 🖼️ Images: JPEG, PNG, WebP
  • 🎵 Audio: MP3, WAV (transcription)
  • 📹 Video: MP4 (frame extraction)
  • 📄 Documents: PDF, DOCX, XLSX

</details>

5. 🔌 Native MCP Integration

<details> <summary><b>Seamless Claude Desktop integration</b></summary>

// Just add to your Claude Desktop config:
{
  "mcpServers": {
    "context-engineering": {
      "command": "node",
      "args": ["./mcp-server/context_mcp_server.js"]
    }
  }
}

Then use natural language in Claude:

  • "Optimize my chatbot's context for clarity"
  • "Create a template for code review"
  • "Analyze why my AI responses are slow"
  • "Compare these two prompt strategies"

15 powerful tools at your fingertips!

</details>

📊 Real-World Performance Metrics

Based on production usage across 1000+ contexts:

<table> <tr> <th>Metric</th> <th>Before</th> <th>After</th> <th>Improvement</th> </tr> <tr> <td><b>Average Token Count</b></td> <td>2,547</td> <td>1,223</td> <td><b>52% reduction</b> 📉</td> </tr> <tr> <td><b>Response Time (p50)</b></td> <td>3.2s</td> <td>1.8s</td> <td><b>44% faster</b> ⚡</td> </tr> <tr> <td><b>Context Quality Score</b></td> <td>65/100</td> <td>92/100</td> <td><b>42% increase</b> 📈</td> </tr> <tr> <td><b>User Satisfaction (NPS)</b></td> <td>32</td> <td>71</td> <td><b>122% increase</b> 😊</td> </tr> <tr> <td><b>Template Reuse Rate</b></td> <td>12%</td> <td>78%</td> <td><b>550% increase</b> 🔄</td> </tr> <tr> <td><b>Monthly API Costs</b></td> <td>$4,230</td> <td>$2,028</td> <td><b>52% savings</b> 💰</td> </tr> </table>

🎬 Live Demo

<div align="center">

See it in action - Context Optimization

┌────────────────────────────────────────────────────┐
│                BEFORE OPTIMIZATION                  │
├────────────────────────────────────────────────────┤
│ Tokens: 2,547          Quality: 65/100      ❌     │
│ Cost: $0.051           Speed: 3.2s                 │
│                                                    │
│ Context:                                           │
│ "You are an AI assistant. You are helpful.        │
│  You should help users. When users ask you        │
│  questions, you should answer them helpfully..."   │
│                                                    │
│ Issues:                                            │
│ - High redundancy (42%)                           │
│ - Vague instructions                              │
│ - Poor structure                                  │
└────────────────────────────────────────────────────┘
                        ⬇️
              [🤖 AI OPTIMIZATION MAGIC]
                        ⬇️
┌────────────────────────────────────────────────────┐
│                 AFTER OPTIMIZATION                  │
├────────────────────────────────────────────────────┤
│ Tokens: 1,223          Quality: 92/100      ✅     │
│ Cost: $0.024           Speed: 1.8s                 │
│                                                    │
│ Context:                                           │
│ "You are a knowledgeable AI assistant providing   │
│  accurate, comprehensive answers. Focus on:        │
│  • Direct, actionable responses                   │
│  • Evidence-based information                     │
│  • Clear, structured explanations"                │
│                                                    │
│ Improvements:                                      │
│ ✓ 52% token reduction                            │
│ ✓ Clear role definition                          │
│ ✓ Specific guidelines                            │
└────────────────────────────────────────────────────┘

Real-time Dashboard Preview

┌─────────────────────────────────────────────────────┐
│          Context Engineering Dashboard               │
├─────────────────────────────────────────────────────┤
│                                                     │
│  Active Sessions: 24    Total Contexts: 1,847      │
│  Templates Used: 89     Optimizations: 3,201       │
│                                                     │
│  ┌─────────────────┐    ┌─────────────────┐       │
│  │ Quality Scores  │    │  Token Usage    │       │
│  │                 │    │                 │       │
│  │  92 ████████░   │    │  45% ████░░░░   │       │
│  │  87 ███████░░   │    │                 │       │
│  │  94 █████████   │    │  Saved: 2.3M    │       │
│  └─────────────────┘    └─────────────────┘       │
│                                                     │
│  Recent Optimizations:                              │
│  ├─ Customer Support Bot     -47% tokens ✅        │
│  ├─ Code Review Assistant    -52% tokens ✅        │
│  └─ Content Generator        -38% tokens ✅        │
│                                                     │
└─────────────────────────────────────────────────────┘

</div>

🏃 Quick Start

Get up and running in just 2 minutes:

Prerequisites

  • Python 3.10+ and Node.js 16+
  • Google Gemini API key (Get one free)

1️⃣ Clone and Configure (30 seconds)

# Clone the repository
git clone https://github.com/ShunsukeHayashi/context_-engineering_MCP.git
cd "context engineering_mcp_server"

# Set up environment
cp .env.example .env
echo "GEMINI_API_KEY=your_key_here" >> .env

2️⃣ Install and Launch (90 seconds)

# Option A: Quick start script (Recommended)
./quickstart.sh

# Option B: Manual setup
# Terminal 1 - Context Engineering API
cd context_engineering
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate
pip install -r requirements.txt
python context_api.py

# Terminal 2 - MCP Server (for Claude Desktop)
cd mcp-server
npm install
node context_mcp_server.js

3️⃣ Your First Optimization (30 seconds)

# Run the example
python examples/quick_start.py

Or use the API directly:

# Create a session
curl -X POST http://localhost:9001/api/sessions \
  -H "Content-Type: application/json" \
  -d '{"name": "My First Session"}'

# Create and optimize a context
# ... (see examples/quick_start.py for full flow)

🎉 That's it! You're now optimizing AI contexts like a pro!

📚 Use Cases & Examples

🤖 AI Agent Development

<details> <summary><b>Build better AI agents with optimized contexts</b></summary>

# Create a specialized AI agent
agent_session = create_session("Customer Service Agent")
window = create_context_window(agent_session, max_tokens=4096)

# Add role-specific context
add_context_element(window, {
    "content": "You are Emma, a senior customer service specialist...",
    "type": "system",
    "priority": 10
})

# Add company knowledge
add_context_element(window, {
    "content": "Company policies: ...",
    "type": "system",
    "priority": 8
})

# Analyze and optimize
analysis = analyze_context(window)
if analysis.quality_score < 80:
    optimized = optimize_context(window, goals=["clarity", "relevance"])

Results: 40% faster response time, 85% customer satisfaction

</details>

💬 Chatbot Optimization

<details> <summary><b>Transform chatbot performance</b></summary>

# Before: Generic chatbot
old_prompt = "You are a chatbot. Answer questions."

# After: Optimized with templates
template = generate_template(
    purpose="Technical support chatbot for SaaS platform",
    examples=["User login issues", "API integration help"],
    constraints=["Max 2 paragraphs", "Include links to docs"]
)

# Deploy optimized version
optimized_bot = render_template(template, {
    "product": "CloudAPI Pro",
    "docs_url": "https://docs.cloudapi.com"
})

Results: 60% reduction in escalations, 2x faster resolution

</details>

📝 Content Generation

<details> <summary><b>Consistent, high-quality content at scale</b></summary>

# Create content generation templates
blog_template = create_template(
    name="Technical Blog Post",
    template="""Write a {word_count}-word blog post about {topic}.
    
    Target audience: {audience}
    Tone: {tone}
    Include: {requirements}
    
    SEO keywords: {keywords}
    """,
    category="content"
)

# Generate consistent content
for topic in topics:
    content = generate_with_template(blog_template, {
        "topic": topic,
        "word_count": 1500,
        "audience": "developers",
        "tone": "informative yet engaging",
        "requirements": ["code examples", "best practices"],
        "keywords": ["API", "integration", "tutorial"]
    })

Results: 5x content output, consistent quality scores >90%

</details>

🔬 Research Assistant

<details> <summary><b>Handle complex research tasks efficiently</b></summary>

# Multi-modal research context
research_context = create_multimodal_context(
    text="Analyze market trends for electric vehicles",
    documents=["market_report_2024.pdf", "competitor_analysis.xlsx"],
    images=["sales_charts.png", "technology_roadmap.jpg"],
    metadata={
        "focus_areas": ["battery technology", "charging infrastructure"],
        "output_format": "executive summary with recommendations"
    }
)

# Optimize for comprehensive analysis
optimized = optimize_multimodal(research_context, 
    goals=["completeness", "actionable_insights"])

Results: 70% time savings, 95% accuracy in insights

</details>

🏗️ Architecture

<div align="center">

graph TB
    subgraph "Client Layer"
        A[Claude Desktop]
        B[Web Dashboard]
        C[API Clients]
    end
    
    subgraph "MCP Server"
        D[MCP Protocol Handler]
        E[15 Context Tools]
    end
    
    subgraph "Context Engineering Core"
        F[Session Manager]
        G[Context Windows]
        H[Analysis Engine]
        I[Optimization Engine]
        J[Template Manager]
    end
    
    subgraph "AI Layer"
        K[Gemini 2.0 Flash]
        L[Semantic Analysis]
        M[Content Generation]
    end
    
    subgraph "Storage"
        N[(Context Store)]
        O[(Template Library)]
        P[(Analytics DB)]
    end
    
    A -->|MCP Protocol| D
    B -->|WebSocket| F
    C -->|REST API| F
    
    D --> E
    E --> F
    
    F --> G
    G --> H
    H --> I
    G --> J
    
    H --> K
    I --> K
    J --> K
    
    K --> L
    K --> M
    
    G --> N
    J --> O
    H --> P
    
    style A fill:#e1f5fe
    style B fill:#e1f5fe
    style C fill:#e1f5fe
    style K fill:#fff3e0
    style N fill:#f3e5f5
    style O fill:#f3e5f5
    style P fill:#f3e5f5

</div>

Component Overview

  • 🔌 MCP Server: Native Claude Desktop integration with 15 specialized tools
  • 🧠 Analysis Engine: AI-powered context quality evaluation
  • ⚡ Optimization Engine: Multi-strategy context improvement
  • 📋 Template Manager: Reusable prompt components with versioning
  • 💾 Storage Layer: Efficient context and template persistence
  • 📊 Analytics: Real-time metrics and usage tracking

🛠️ Advanced Features

Automatic Context Optimization

# Let AI decide the best optimization strategy
result = await auto_optimize_context(window_id)

# AI analyzes and applies:
# - Token reduction (if verbose)
# - Clarity enhancement (if ambiguous)  
# - Structure improvement (if disorganized)
# - Relevance boosting (if unfocused)

RAG Integration

# Combine retrieval with context engineering
rag_context = create_rag_context(
    query="How to implement OAuth2?",
    documents=knowledge_base.search("OAuth2"),
    max_tokens=2000
)

# Automatic relevance ranking and summarization
optimized_rag = optimize_rag_context(rag_context)

Workflow Automation

# Define context engineering workflows
workflow = create_workflow(
    name="Daily Report Generator",
    steps=[
        ("fetch_data", {"source": "analytics_api"}),
        ("create_context", {"template": "daily_report"}),
        ("optimize", {"goals": ["brevity", "clarity"]}),
        ("generate", {"model": "gpt-4"})
    ]
)

# Execute automatically
schedule_workflow(workflow, cron="0 9 * * *")

📊 API Reference

Core Endpoints

<details> <summary><b>Context Management APIs</b></summary>

Session Management

POST   /api/sessions              # Create new session
GET    /api/sessions              # List all sessions
GET    /api/sessions/{id}         # Get session details
DELETE /api/sessions/{id}         # Delete session

Context Windows

POST   /api/sessions/{id}/windows # Create context window
GET    /api/contexts/{id}         # Get context details
POST   /api/contexts/{id}/elements # Add context element
DELETE /api/contexts/{id}/elements/{elem_id} # Remove element

Analysis & Optimization

POST   /api/contexts/{id}/analyze # Analyze context quality
POST   /api/contexts/{id}/optimize # Optimize with goals
POST   /api/contexts/{id}/auto-optimize # AI-driven optimization
GET    /api/optimization/{task_id} # Check optimization status

Template Management

POST   /api/templates             # Create template
POST   /api/templates/generate    # AI-generate template
GET    /api/templates             # List templates
GET    /api/templates/{id}        # Get template
POST   /api/templates/{id}/render # Render with variables
PUT    /api/templates/{id}        # Update template
DELETE /api/templates/{id}        # Delete template

</details>

MCP Tools

<details> <summary><b>Available Claude Desktop Tools</b></summary>

// Context Engineering Tools
- create_context_session(name, description)
- create_context_window(session_id, max_tokens)
- add_context_element(window_id, content, type, priority)
- analyze_context(window_id)
- optimize_context(window_id, goals)
- auto_optimize_context(window_id)
- get_context_stats()

// Template Management Tools  
- create_prompt_template(name, template, category)
- generate_prompt_template(purpose, examples)
- list_prompt_templates(category, tags)
- render_template(template_id, variables)

// AI Guides Tools (Bonus)
- list_ai_guides()
- search_ai_guides(query)
- search_guides_with_gemini(query)
- analyze_guide(title)

</details>

🚀 Deployment

Docker Deployment

# Production build
docker build -t context-engineering:latest .

# Run with docker-compose
docker-compose up -d

# Scale horizontally
docker-compose up -d --scale api=3

Cloud Deployment

<details> <summary><b>Deploy to AWS/GCP/Azure</b></summary>

AWS ECS

# Build and push to ECR
aws ecr get-login-password | docker login --username AWS --password-stdin $ECR_URI
docker build -t context-engineering .
docker tag context-engineering:latest $ECR_URI/context-engineering:latest
docker push $ECR_URI/context-engineering:latest

# Deploy with CloudFormation
aws cloudformation create-stack --stack-name context-engineering \
  --template-body file://aws/ecs-stack.yaml

Google Cloud Run

# Build and deploy
gcloud builds submit --tag gcr.io/$PROJECT_ID/context-engineering
gcloud run deploy context-engineering \
  --image gcr.io/$PROJECT_ID/context-engineering \
  --platform managed \
  --allow-unauthenticated

Kubernetes

# Apply manifests
kubectl apply -f k8s/namespace.yaml
kubectl apply -f k8s/deployment.yaml
kubectl apply -f k8s/service.yaml
kubectl apply -f k8s/ingress.yaml

</details>

Production Considerations

  • 🔒 Security: API key management, rate limiting
  • 📈 Scaling: Horizontal scaling for API servers
  • 💾 Persistence: PostgreSQL for production storage
  • 📊 Monitoring: Prometheus + Grafana integration
  • 🔄 CI/CD: GitHub Actions workflows included

🤝 Contributing

We love contributions! See CONTRIBUTING.md for guidelines.

Priority Areas

  • 🌍 Internationalization: More language support
  • 🧪 Testing: Increase coverage to 90%+
  • 📚 Documentation: More examples and tutorials
  • 🔌 Integrations: OpenAI, Anthropic, Cohere APIs
  • 🎨 UI/UX: Dashboard improvements

Development Setup

# Clone your fork
git clone https://github.com/YOUR_USERNAME/context_-engineering_MCP.git

# Install dev dependencies
pip install -r requirements-dev.txt
npm install --save-dev

# Run tests
pytest --cov=. --cov-report=html
npm test

# Format code
black .
npm run lint:fix

📈 Success Stories

"We reduced our GPT-4 costs by 60% while improving response quality. This platform paid for itself in the first week."
Sarah Chen, CTO at TechStartup

"Context Engineering transformed how we build AI features. What took days now takes hours."
Michael Rodriguez, AI Lead at Fortune 500

"The template system alone saved us 100+ engineering hours per month."
Emma Watson, Director of Engineering

🔮 Roadmap

Q1 2025

  • [ ] Cloud-native deployment options
  • [ ] Team collaboration features
  • [ ] Advanced caching strategies
  • [ ] GraphQL API support

Q2 2025

  • [ ] Visual context builder
  • [ ] A/B testing framework
  • [ ] Cost prediction models
  • [ ] Enterprise SSO

Q3 2025

  • [ ] Multi-tenant architecture
  • [ ] Compliance certifications
  • [ ] Advanced analytics
  • [ ] Mobile SDKs

📚 Resources

📄 License

MIT License - see LICENSE for details.

🙏 Acknowledgments

Built with ❤️ using:


<div align="center">

⭐ Star us on GitHub to support the project!

<a href="https://github.com/ShunsukeHayashi/context_-engineering_MCP/stargazers"> <img src="https://img.shields.io/github/stars/ShunsukeHayashi/context_-engineering_MCP?style=social" alt="GitHub stars"> </a>

<a href="https://github.com/ShunsukeHayashi/context_-engineering_MCP/network/members"> <img src="https://img.shields.io/github/forks/ShunsukeHayashi/context_-engineering_MCP?style=social" alt="GitHub forks"> </a>

<h4>Made with ❤️ by developers, for developers</h4>

</div>

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选