Context MCP Server
A CloudFlare Workers-based MCP server that provides semantic memory and journal capabilities with vector search. Enables users to store, search, and retrieve memories and journal entries using AI-powered semantic similarity without any local setup required.
README
Context MCP Server
A CloudFlare Workers-based Model Context Protocol (MCP) server that provides semantic memory and journal capabilities with zero-setup user experience.
Features
- Zero-Setup Experience: Users get unique URLs with no local installation required
- Semantic Search: BGE-Base-EN-v1.5 embeddings with vector similarity search
- User Isolation: Complete data privacy with user-specific access control
- Real-Time Communication: Server-Sent Events (SSE) for live MCP protocol communication
- Scalable Architecture: Built on CloudFlare's serverless infrastructure
Core Tools
addMemory: Store memories with semantic search capabilitiessearchMemory: Find relevant memories using semantic similarityaddJournal: Create journal entries with optional titles and tagssearchJournals: Search journal entries semanticallygetRecentActivity: Get recent memories and journal entries
Architecture
- CloudFlare Workers: Serverless compute for the MCP server
- D1 Database: SQLite-based storage for structured data
- Vectorize: Vector database for semantic search
- CloudFlare AI: BGE-Base-EN-v1.5 embeddings generation
- KV Store: Session management and caching
Quick Start
Prerequisites
- Node.js 18+ installed
- CloudFlare account with Workers, D1, and Vectorize access
- Wrangler CLI installed and authenticated
npm install -g wrangler
wrangler login
Setup
- Clone and Install
git clone <repository-url>
cd context-mcp
npm install
- Database Setup
npm run setup
This script will:
- Create D1 database and update wrangler.toml
- Set up database schema with proper indexes
- Create Vectorize index for embeddings
- Configure KV namespace for sessions
- Deploy
npm run deploy
- Test the Deployment
# Health check
curl https://your-worker.workers.dev/health
# Generate a user ID
curl https://your-worker.workers.dev/generate-user
Optional: Seed Test Data
npm run seed [USER_ID]
Usage
For MCP Clients
Connect to your deployed worker using the SSE endpoint:
https://your-worker.workers.dev/{USER_ID}/sse
Example with Claude Desktop
Add to your claude_desktop_config.json:
{
"mcpServers": {
"context": {
"command": "npx",
"args": ["@modelcontextprotocol/server-sse", "https://your-worker.workers.dev/{USER_ID}/sse"]
}
}
}
Direct HTTP API
You can also use HTTP POST requests to the MCP endpoint:
curl -X POST https://your-worker.workers.dev/{USER_ID} \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/call",
"params": {
"name": "addMemory",
"arguments": {
"content": "Learning about MCP protocol implementation",
"tags": ["learning", "mcp"]
}
}
}'
Tool Reference
addMemory
Store a new memory with semantic search capabilities.
{
"name": "addMemory",
"arguments": {
"content": "The memory content to store",
"tags": ["optional", "tags"]
}
}
searchMemory
Search memories using semantic similarity.
{
"name": "searchMemory",
"arguments": {
"query": "Search query text",
"limit": 5,
"tags": ["optional", "filter"]
}
}
addJournal
Create a new journal entry.
{
"name": "addJournal",
"arguments": {
"title": "Optional title",
"content": "Journal entry content",
"tags": ["optional", "tags"]
}
}
searchJournals
Search journal entries semantically.
{
"name": "searchJournals",
"arguments": {
"query": "Search query text",
"limit": 5,
"tags": ["optional", "filter"]
}
}
getRecentActivity
Get recent memories and journal entries.
{
"name": "getRecentActivity",
"arguments": {
"days": 7,
"limit": 10
}
}
Development
Local Development
npm run dev
This starts a local development server with hot reloading.
Database Operations
# Execute SQL file
npm run db:execute -- --file=schema.sql
# Run SQL command
npm run db:query -- "SELECT COUNT(*) FROM memories;"
# View logs
npm run logs
Type Checking
npm run build
Project Structure
context-mcp/
├── src/
│ ├── worker.ts # Main CloudFlare Worker
│ ├── mcp-handler.ts # MCP protocol implementation
│ ├── sse-handler.ts # Server-Sent Events handler
│ └── types.ts # TypeScript type definitions
├── scripts/
│ ├── setup-database.js # Database setup automation
│ └── seed-data.js # Test data seeding
├── schema.sql # Database schema
├── wrangler.toml # CloudFlare configuration
└── package.json # Dependencies and scripts
Configuration
Environment Variables
Set in wrangler.toml under [vars]:
[vars]
NODE_ENV = "production"
# Add custom variables here
Bindings
The worker uses these CloudFlare bindings:
DB: D1 Database for structured dataVECTORIZE: Vector search indexAI: BGE embeddings generationSESSIONS: KV namespace for sessions
Security
- User Isolation: All data is scoped to user IDs
- UUID Validation: Proper user ID format validation
- CORS Headers: Configured for cross-origin requests
- Error Handling: No sensitive data exposed in errors
Performance
- Vector Search: Sub-100ms semantic similarity queries
- Database Queries: Optimized with proper indexing
- Connection Management: Automatic cleanup of stale SSE connections
- Heartbeat: 30-second intervals to maintain connections
Monitoring
Health Check
curl https://your-worker.workers.dev/health
Connection Status
The SSE handler provides connection monitoring capabilities for debugging.
Logs
npm run logs
View real-time CloudFlare Worker logs.
Troubleshooting
Common Issues
- Database not found: Run
npm run setupto create database - Embedding errors: Ensure CloudFlare AI binding is configured
- SSE connection issues: Check browser console for connection errors
- Vector search returning no results: Verify data was added with embeddings
Debug Steps
- Check health endpoint:
https://your-worker.workers.dev/health - Verify user ID format (must be valid UUID)
- Check CloudFlare dashboard for binding configuration
- Review worker logs:
npm run logs
Contributing
- Fork the repository
- Create a feature branch
- Make changes and test thoroughly
- Submit a pull request
License
MIT License - see LICENSE file for details.
Roadmap
- [ ] Enhanced metadata filtering for vector search
- [ ] File attachment support for journal entries
- [ ] Export/import functionality
- [ ] Advanced analytics and insights
- [ ] Multi-language embedding support
- [ ] Real-time collaboration features
Built with ❤️ using CloudFlare Workers and the Model Context Protocol.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。