Continuo Memory System
Enables persistent memory and semantic search for development workflows with hierarchical compression. Store and retrieve development knowledge across IDE sessions using natural language queries, circumventing context window limitations.
README
<div align="center"> <img src="https://shigoto.me/continuo.jpeg" alt="Continuo"> </div>
Continuo Memory System
Persistent memory and hierarchical compression for development environments
Overview
Continuo is a persistent memory system that provides semantic search and storage capabilities for development workflows. By separating reasoning (LLM) from long-term memory (Vector DB + hierarchical compression), the system maintains knowledge indefinitely, circumventing context window limitations.
Key Features
- Persistent Memory - Store and retrieve development knowledge across sessions
- Semantic Search - Find relevant information using natural language queries
- Hierarchical Compression - N0 (chunks) → N1 (summaries) → N2 (meta-summaries)
- MCP Integration - Seamless integration with IDEs via Model Context Protocol
- Cost Effective - 100% local (free) or hybrid (low-cost) deployment options
- FastMCP - Built on the modern MCP server framework
Quick Start
Installation
git clone https://github.com/GtOkAi/continuo-memory-mcp-memory-mcp.git
cd continuo
./scripts/setup_memory.sh
Usage
- Start the memory server:
./scripts/run_memory_server.sh
- Configure your IDE (Qoder/Cursor):
Create .qoder/mcp.json (or .cursor/mcp.json):
{
"mcpServers": {
"continuo-memory": {
"command": "/absolute/path/to/continuo/venv_memory/bin/python",
"args": [
"/absolute/path/to/continuo/src/mcp/memory/mcp_memory_server.py",
"--provider",
"local",
"--db-path",
"/absolute/path/to/memory_db"
]
}
}
}
- Use in your IDE:
@continuo-memory search_memory("authentication implementation")
@continuo-memory store_memory("Fixed JWT validation bug", {"file": "auth.py"})
@continuo-memory get_memory_stats()
Architecture
IDE Chat ──► MCP Adapter ──► Memory Server ──► ChromaDB
▲ ▲ │ │
│ └──── tools ◄─────┘ │
└───── response ◄──── context ◄───────────────┘
Components
- Memory Server - ChromaDB + sentence-transformers for embeddings
- MCP Adapter - FastMCP server exposing
search_memoryandstore_memorytools - Hierarchical Compression - Multi-level context optimization (N0/N1/N2)
- Autonomous Mode - Optional automation with Observe → Plan → Act → Reflect cycle
Configuration
Local Embeddings (Free)
python src/mcp/memory/mcp_memory_server.py \
--provider local \
--db-path ./memory_db
OpenAI Embeddings (Low-cost)
python src/mcp/memory/mcp_memory_server.py \
--provider openai \
--api-key sk-your-key \
--db-path ./memory_db
API
Tools
search_memory(query: str, top_k: int = 5, level: str | None = None) -> str
- Semantic search in persistent memory
- Returns relevant documents with similarity scores
store_memory(text: str, metadata: dict | None = None, level: str = "N0") -> str
- Store content in persistent memory
- Supports metadata tagging and hierarchical levels
get_memory_stats() -> str
- Get memory statistics (total documents, levels, etc.)
Hierarchical Levels
- N0 - Raw chunks (code snippets, conversations)
- N1 - Micro-summaries (5-10 chunks compressed)
- N2 - Meta-summaries (5-10 summaries compressed)
Examples
See the examples/memory/ directory:
basic_usage.py- Simple store/retrieve operationshierarchical_demo.py- Multi-level compression examplesauto_mode_demo.py- Autonomous mode demonstration
Documentation
- Setup Guide - Detailed installation instructions
- Architecture Specification - Complete technical documentation
- Code of Conduct - Community guidelines
Technology Stack
- Python 3.9+ - Core implementation
- ChromaDB - Vector database for embeddings
- Sentence Transformers - Local embedding generation (all-MiniLM-L6-v2)
- FastMCP - MCP server framework
- Model Context Protocol - IDE integration standard
Cost & Licensing
Embedding Providers
| Provider | Storage | Search | Monthly (1000 queries) |
|---|---|---|---|
| Local (sentence-transformers) | Free | Free | $0 |
| OpenAI embeddings | Free | ~$0.0001/query | ~$0.10 |
Software License
| Use Case | License | Cost |
|---|---|---|
| Individual/Research | AGPL v3 | Free |
| Startup (<$1M, <10 employees) | AGPL v3 | Free |
| Non-profit/Education | AGPL v3 | Free |
| Commercial (≥$1M OR ≥10 employees) | Commercial | From $2,500/year |
See COMMERCIAL_LICENSE.md for details.
Contributing
Contributions are welcome! Please read CONTRIBUTING.md for guidelines.
License
Continuo Memory System is dual-licensed:
📖 Open Source (AGPL v3)
FREE for:
- ✅ Individual developers and researchers
- ✅ Non-profit organizations and educational institutions
- ✅ Companies with <$1M revenue AND <10 employees
- ✅ Development, testing, and evaluation
- ✅ Open source projects (AGPL-compatible)
Requirements: Share source code of modifications under AGPL v3
See LICENSE for full AGPL v3 terms.
💼 Commercial License
REQUIRED for:
- ❌ Companies with ≥$1M revenue OR ≥10 employees
- ❌ Proprietary/closed-source products
- ❌ SaaS offerings without source disclosure
Benefits:
- ✅ No AGPL copyleft obligations
- ✅ Proprietary use rights
- ✅ Priority support (optional)
- ✅ Custom deployment assistance (optional)
Pricing: From $2,500/year (Bronze) to custom Enterprise
See COMMERCIAL_LICENSE.md for pricing and details.
💡 Why AGPL + Commercial?
- Sustainable Development: Commercial users fund ongoing maintenance
- Open Source Protection: AGPL prevents proprietary forks
- Fair Use: Small teams and non-profits use free indefinitely
- Community First: Core features always open source
Contact: gustavo@shigoto.me for commercial inquiries
Acknowledgments
Built using:
- Model Context Protocol - Protocol specification
- MCP Python SDK - MCP implementation
- ChromaDB - Vector database
- Sentence Transformers - Embedding models
Authors
- D.D. & Gustavo Porto
Note: This project implements the architecture described in continuo.markdown. For academic context and detailed specifications, refer to that document.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。