Continuo Memory System

Continuo Memory System

Enables persistent memory and semantic search for development workflows with hierarchical compression. Store and retrieve development knowledge across IDE sessions using natural language queries, circumventing context window limitations.

Category
访问服务器

README

<div align="center"> <img src="https://shigoto.me/continuo.jpeg" alt="Continuo"> </div>

Continuo Memory System

Persistent memory and hierarchical compression for development environments

Python 3.9+ License: AGPL v3 Commercial License MCP Protocol

Overview

Continuo is a persistent memory system that provides semantic search and storage capabilities for development workflows. By separating reasoning (LLM) from long-term memory (Vector DB + hierarchical compression), the system maintains knowledge indefinitely, circumventing context window limitations.

Key Features

  • Persistent Memory - Store and retrieve development knowledge across sessions
  • Semantic Search - Find relevant information using natural language queries
  • Hierarchical Compression - N0 (chunks) → N1 (summaries) → N2 (meta-summaries)
  • MCP Integration - Seamless integration with IDEs via Model Context Protocol
  • Cost Effective - 100% local (free) or hybrid (low-cost) deployment options
  • FastMCP - Built on the modern MCP server framework

Quick Start

Installation

git clone https://github.com/GtOkAi/continuo-memory-mcp-memory-mcp.git
cd continuo
./scripts/setup_memory.sh

Usage

  1. Start the memory server:
./scripts/run_memory_server.sh
  1. Configure your IDE (Qoder/Cursor):

Create .qoder/mcp.json (or .cursor/mcp.json):

{
  "mcpServers": {
    "continuo-memory": {
      "command": "/absolute/path/to/continuo/venv_memory/bin/python",
      "args": [
        "/absolute/path/to/continuo/src/mcp/memory/mcp_memory_server.py",
        "--provider",
        "local",
        "--db-path",
        "/absolute/path/to/memory_db"
      ]
    }
  }
}
  1. Use in your IDE:
@continuo-memory search_memory("authentication implementation")
@continuo-memory store_memory("Fixed JWT validation bug", {"file": "auth.py"})
@continuo-memory get_memory_stats()

Architecture

IDE Chat ──► MCP Adapter ──► Memory Server ──► ChromaDB
      ▲              ▲                 │            │
      │              └──── tools ◄─────┘            │
      └───── response ◄──── context ◄───────────────┘

Components

  • Memory Server - ChromaDB + sentence-transformers for embeddings
  • MCP Adapter - FastMCP server exposing search_memory and store_memory tools
  • Hierarchical Compression - Multi-level context optimization (N0/N1/N2)
  • Autonomous Mode - Optional automation with Observe → Plan → Act → Reflect cycle

Configuration

Local Embeddings (Free)

python src/mcp/memory/mcp_memory_server.py \
  --provider local \
  --db-path ./memory_db

OpenAI Embeddings (Low-cost)

python src/mcp/memory/mcp_memory_server.py \
  --provider openai \
  --api-key sk-your-key \
  --db-path ./memory_db

API

Tools

search_memory(query: str, top_k: int = 5, level: str | None = None) -> str

  • Semantic search in persistent memory
  • Returns relevant documents with similarity scores

store_memory(text: str, metadata: dict | None = None, level: str = "N0") -> str

  • Store content in persistent memory
  • Supports metadata tagging and hierarchical levels

get_memory_stats() -> str

  • Get memory statistics (total documents, levels, etc.)

Hierarchical Levels

  • N0 - Raw chunks (code snippets, conversations)
  • N1 - Micro-summaries (5-10 chunks compressed)
  • N2 - Meta-summaries (5-10 summaries compressed)

Examples

See the examples/memory/ directory:

  • basic_usage.py - Simple store/retrieve operations
  • hierarchical_demo.py - Multi-level compression examples
  • auto_mode_demo.py - Autonomous mode demonstration

Documentation

Technology Stack

  • Python 3.9+ - Core implementation
  • ChromaDB - Vector database for embeddings
  • Sentence Transformers - Local embedding generation (all-MiniLM-L6-v2)
  • FastMCP - MCP server framework
  • Model Context Protocol - IDE integration standard

Cost & Licensing

Embedding Providers

Provider Storage Search Monthly (1000 queries)
Local (sentence-transformers) Free Free $0
OpenAI embeddings Free ~$0.0001/query ~$0.10

Software License

Use Case License Cost
Individual/Research AGPL v3 Free
Startup (<$1M, <10 employees) AGPL v3 Free
Non-profit/Education AGPL v3 Free
Commercial (≥$1M OR ≥10 employees) Commercial From $2,500/year

See COMMERCIAL_LICENSE.md for details.

Contributing

Contributions are welcome! Please read CONTRIBUTING.md for guidelines.

License

Continuo Memory System is dual-licensed:

📖 Open Source (AGPL v3)

FREE for:

  • ✅ Individual developers and researchers
  • ✅ Non-profit organizations and educational institutions
  • ✅ Companies with <$1M revenue AND <10 employees
  • ✅ Development, testing, and evaluation
  • ✅ Open source projects (AGPL-compatible)

Requirements: Share source code of modifications under AGPL v3

See LICENSE for full AGPL v3 terms.

💼 Commercial License

REQUIRED for:

  • ❌ Companies with ≥$1M revenue OR ≥10 employees
  • ❌ Proprietary/closed-source products
  • ❌ SaaS offerings without source disclosure

Benefits:

  • ✅ No AGPL copyleft obligations
  • ✅ Proprietary use rights
  • ✅ Priority support (optional)
  • ✅ Custom deployment assistance (optional)

Pricing: From $2,500/year (Bronze) to custom Enterprise

See COMMERCIAL_LICENSE.md for pricing and details.

💡 Why AGPL + Commercial?

  • Sustainable Development: Commercial users fund ongoing maintenance
  • Open Source Protection: AGPL prevents proprietary forks
  • Fair Use: Small teams and non-profits use free indefinitely
  • Community First: Core features always open source

Contact: gustavo@shigoto.me for commercial inquiries

Acknowledgments

Built using:

Authors

  • D.D. & Gustavo Porto

Note: This project implements the architecture described in continuo.markdown. For academic context and detailed specifications, refer to that document.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选