ControlAPI-MCP

ControlAPI-MCP

An MCP server that dynamically converts any OpenAPI or REST API into MCP tools, allowing for real-time server switching and schema reloading. It supports variable substitution for headers and bodies, enabling seamless authentication and interaction with multiple API environments.

Category
访问服务器

README

ControlAPI-MCP

MCP server that exposes any OpenAPI/REST API as MCP tools with dynamic server switching and variable substitution.

🚀 One-Click Install

Click to install directly in your editor - no configuration needed!

Linux / macOS:

📥 Install in VS Code

📥 Install in VS Code Insiders

💡 After Installation: The AI assistant will guide you to connect to an API server. Simply provide the OpenAPI URL when asked, or use the set_server_config tool to connect to your API.

Quick Start (Auto-Download)

Zero installation - automatically downloads and runs the latest release:

  1. Download the auto-run script:
curl -O https://raw.githubusercontent.com/fellowabhi/ControlAPI-openapi-to-mcp/main/auto-run.sh
chmod +x auto-run.sh
  1. Use it in your MCP config:
{
  "servers": {
    "controlapi-mcp": {
      "type": "stdio",
      "command": "/path/to/auto-run.sh"
    }
  }
}

Note: You can optionally set OPENAPI_URL, BASE_URL, and SERVER_NICKNAME in env vars, or configure dynamically using the set_server_config tool.

Download from releases or build:

export OPENAPI_URL='http://your-api.com/openapi.json'
export BASE_URL='http://your-api.com'  # optional
./dist/controlapi-mcp

Setup (Development)

pip install -e .

Building Binary

./build.sh

Creates a standalone executable at dist/controlapi-mcp (16MB)

MCP Configuration

Using Binary

{
  "servers": {
    "controlapi-mcp": {
      "type": "stdio",
      "command": "/path/to/openapi-mcp-adapter/dist/controlapi-mcp",
      "env": {
        "OPENAPI_URL": "http://localhost:8000/openapi.json",
        "BASE_URL": "http://localhost:8000",
        "DEBUG_PORT": "45133"
      }
    }
  }
}

Using Python (Development)

{
  "servers": {
    "controlapi-mcp": {
      "type": "stdio",
      "command": "/path/to/project/.venv/bin/python",
      "args": ["-m", "src.main"],
      "cwd": "/path/to/project",
      "env": {
        "OPENAPI_URL": "http://localhost:8000/openapi.json",
        "REFRESH_INTERVAL": "300",
        "PYTHONPATH": "/path/to/project",
        "BASE_URL": "http://localhost:8000",
        "DEBUG_PORT": "45133"
      }
    }
  }
}

Optional: OPENAPI_URL, BASE_URL, SERVER_NICKNAME, DEBUG_PORT (default: 45133)

💡 No Configuration Needed: You can start with no environment variables and configure the server dynamically using the set_server_config tool. The AI assistant will guide you through the setup.

🔍 Debug UI: Access browser-based request/response monitor at http://localhost:45133 (or custom DEBUG_PORT). URL available in get_server_info response.

Features

Cross-Platform Support

  • Linux (x86_64) - Full support
  • macOS (Intel & Apple Silicon) - Full support
  • Windows - Use Python or WSL

Dynamic Server Switching

  • Connect to any OpenAPI server at runtime
  • Switch between multiple APIs (dev, staging, production)
  • Server context tracking with history
  • Automatic schema reloading

Available Tools

  • set_server_config - Connect to an OpenAPI server (use this first if not configured)
  • get_server_info - Check current server and connection status
  • get_server_history - View recent server switches
  • health_check - Test server connectivity
  • list_endpoints - List all API endpoints
  • search_schema - Search endpoints by keyword
  • execute_request - Make HTTP requests with variable substitution
  • set_variable - Store variable (e.g., auth token)
  • get_variables - View all stored variables
  • reload_schema - Reload current server's schema

Variable Substitution

Use {{variable_name}} in headers, body, or path:

{
  "headers": {
    "Authorization": "{{token}}"
  }
}

Example Workflow

  1. First time: set_server_config with openapi_url
  2. execute_request to /auth/login → get token
  3. set_variable key="token" value="Bearer xyz..."
  4. execute_request with Authorization: {{token}}
  5. Switch servers: set_server_config to test on different environment

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选