Conversation Search MCP Server

Conversation Search MCP Server

Enables comprehensive search and analysis of Claude Code conversation history using full-text search, optional semantic vector search, and conversation management tools. Provides fast SQLite-based indexing with role-based filtering, project organization, and hybrid search capabilities combining keyword and semantic matching.

Category
访问服务器

README

Conversation Search MCP Server

Version: 1.1.0
Status: Production Ready
Last Updated: 2025-01-07

Overview

Advanced MCP server providing semantic and traditional search capabilities across Claude Code conversation history. Features vector embeddings, hybrid search, and comprehensive conversation management tools.

🚀 Key Features

Search Capabilities

  • Traditional Search: Fast FTS-based keyword search with session indexing
  • Vector Search: Semantic similarity using OpenAI embeddings
  • Hybrid Search: Combined semantic + keyword matching for optimal results
  • Context Retrieval: Adjacent chunk expansion for full conversation context

Conversation Management

  • Recent Conversations: Optimized retrieval with project filtering
  • Session Details: Full conversation history with message threading
  • Auto-Naming: AI-powered conversation title generation
  • Batch Operations: Bulk renaming and processing capabilities

Database Operations

  • Incremental Updates: Process only new conversations since last run
  • Full Migration: Complete conversation database rebuild
  • Statistics: Comprehensive indexing and usage metrics
  • Vector Migration: One-time embedding generation for existing conversations

📊 Current Scale

  • Conversations: 664 processed sessions
  • Messages: 118,453+ indexed messages
  • Vector Chunks: 13,847 semantic chunks
  • Database Size: ~420MB optimized storage
  • Embedding Cost: ~$0.57 (one-time migration)

🛠️ Technical Stack

  • Runtime: Node.js with TypeScript
  • Database: SQLite with FTS and vector extensions
  • Embeddings: OpenAI text-embedding-3-small
  • Protocol: Model Context Protocol (MCP)
  • Search: Hybrid semantic + keyword matching

🔒 Security Configuration

Environment Variables Setup

  1. Copy the environment template:

    cp .env.example .env
    
  2. Configure your API key:

    # Edit .env and add your OpenAI API key
    OPENAI_API_KEY=your_actual_api_key_here
    

Security Best Practices

  • ✅ Environment Variables: All sensitive data is configured via environment variables
  • ✅ No Hardcoded Secrets: API keys are never committed to version control
  • ✅ Secure Defaults: Vector search gracefully degrades without API key
  • ✅ Read-Only Access: OpenAI API is used only for text embedding generation
  • ✅ Local Processing: All conversation data remains on your system
  • ✅ Cost Control: Built-in token estimation and cost tracking

API Key Management

  • Required For: Vector search, semantic search, AI-powered naming
  • Not Required For: Traditional keyword search, conversation management
  • Permissions: Read-only access to OpenAI embeddings API
  • Cost: ~$0.0001 per 1,000 tokens (very low cost for typical usage)
  • Rate Limits: Automatic batching and retry logic included

Data Privacy

  • Local Storage: All conversation data stored locally in SQLite
  • No Data Sharing: Conversations never sent to external services except for embedding generation
  • User Control: Vector search entirely optional and user-controlled
  • Audit Trail: All API usage logged with token counts and costs

⚡ Quick Start

Prerequisites

# 1. Copy and configure environment variables
cp .env.example .env
# Edit .env with your OpenAI API key (optional)

# 2. Install dependencies
npm install

Build and Run

# Build the server
npm run build

# Test direct communication
echo '{"jsonrpc": "2.0", "method": "tools/list", "id": 1}' | node dist/src/index.js

MCP Integration

Add to your Claude Code configuration:

{
  "conversation-search": {
    "type": "stdio", 
    "command": "node",
    "args": ["/path/to/conversation-search/dist/src/index.js"],
    "env": {}
  }
}

🔍 Available Tools

Traditional Search

  • search_conversations - Keyword search with role filtering
  • get_recent_conversations - Latest conversations with project filtering
  • get_conversation_details - Full session message history
  • get_session_for_resume - Resume-formatted conversation data

Vector Search (Requires OpenAI API Key)

  • vector_search_conversations - Semantic similarity search
  • hybrid_search_conversations - Combined semantic + keyword search
  • get_chunk_with_context - Expand search results with adjacent chunks

Management Tools

  • rename_conversation - Assign custom conversation names
  • generate_conversation_summary - AI-powered title generation
  • list_conversations_with_names - Named conversation listing
  • batch_rename_recent - Bulk conversation naming

Database Operations

  • update_database - Full conversation database rebuild
  • update_database_incremental - Process only new conversations
  • get_indexing_stats - Database statistics and health metrics
  • migrate_to_vector_database - One-time vector embedding migration

📖 Documentation

🎯 Performance

  • Search Speed: Sub-second response for most queries
  • Memory Efficient: SQLite-based storage with optimized indexes
  • Scalable: Handles 100K+ messages with consistent performance
  • Graceful Degradation: Traditional search works without OpenAI API key

🔧 Monitoring

Check server health:

# Get comprehensive statistics
echo '{"jsonrpc": "2.0", "method": "tools/call", "params": {"name": "get_indexing_stats"}, "id": 1}' | node dist/src/index.js

Expected output includes traditional and vector database metrics, processing dates, and configuration status.

📝 License

Private development tool - not for redistribution.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选