Coolify MCP Server

Coolify MCP Server

Enables AI agents to deploy and manage applications on Coolify through structured tools, supporting project management, app lifecycle control, pre-configured templates, and deployment monitoring with built-in safety guardrails.

Category
访问服务器

README

Coolify MCP Server

A Model Context Protocol (MCP) server that exposes Coolify API functionality as safe, structured tools for AI agents. This enables AI-driven app marketplaces where users can deploy applications on Coolify with a single click.

🚀 Features

  • Project Management: List, create, and manage Coolify projects
  • Application Lifecycle: Create, update, delete, and manage applications
  • Deployment Control: Deploy applications and monitor their status
  • Template Marketplace: Pre-configured templates for popular applications
  • Safety Guardrails: Quota checking, name conflict detection, and resource limits
  • Comprehensive Logging: Full audit trail of all AI operations

📋 Prerequisites

  • Node.js 18+
  • A running Coolify instance
  • Coolify API token with appropriate permissions
  • Docker (for running the MCP server)

🛠️ Installation

Option 1: Clone and Build

git clone https://github.com/your-org/coolify-mcp-server.git
cd coolify-mcp-server
npm install
npm run build

Option 2: Docker (Recommended)

docker pull ghcr.io/your-org/coolify-mcp-server:latest

⚙️ Configuration

Create a .env file based on .env.example:

# Required
COOLIFY_API_URL=https://your-coolify-instance.com
COOLIFY_API_TOKEN=your-api-token-here

# Optional
COOLIFY_DEFAULT_TEAM_ID=
COOLIFY_MAX_APPS_PER_PROJECT=10
LOG_LEVEL=info

Getting Your Coolify API Token

  1. Log into your Coolify instance
  2. Go to Settings → API Tokens
  3. Create a new token with permissions for:
    • Projects: Read/Write
    • Applications: Read/Write/Delete
    • Deployments: Read/Write

🏃 Running the Server

Development

npm run dev

Production

npm run build
npm start

Docker

docker run \
  -e COOLIFY_API_URL=https://coolify.example.com \
  -e COOLIFY_API_TOKEN=your-token \
  -e COOLIFY_MAX_APPS_PER_PROJECT=20 \
  ghcr.io/your-org/coolify-mcp-server:latest

🔧 MCP Client Configuration

Add to your MCP client configuration:

{
  "mcpServers": {
    "coolify": {
      "command": "node",
      "args": ["/path/to/coolify-mcp-server/dist/index.js"],
      "env": {
        "COOLIFY_API_URL": "https://your-coolify-instance.com",
        "COOLIFY_API_TOKEN": "your-api-token",
        "COOLIFY_MAX_APPS_PER_PROJECT": "10"
      }
    }
  }
}

📚 Available Tools

Projects

  • coolify.list_projects - List all projects
  • coolify.create_project - Create a new project

Applications

  • coolify.list_apps - List applications in a project
  • coolify.get_app - Get application details
  • coolify.create_app - Create a new application
  • coolify.update_app - Update an application
  • coolify.delete_app - Delete an application

Deployments

  • coolify.deploy_app - Deploy an application
  • coolify.get_deployment_status - Check deployment status
  • coolify.get_deployment_logs - Get deployment logs

Templates

  • coolify.deploy_template - Deploy from a pre-configured template
  • coolify.list_templates - List available templates

Safety

  • coolify.check_quota - Check project quota
  • coolify.check_name_conflicts - Check if application name is available

🎯 Quick Start Examples

Deploy Plausible Analytics

// First, check if the name is available
await checkNameConflicts({
  projectId: "proj-123",
  name: "plausible-analytics"
});

// Deploy the template
const result = await deployTemplate({
  templateName: "plausible",
  projectId: "proj-123",
  appName: "plausible-analytics",
  environment: {
    BASE_URL: "https://analytics.example.com",
    SECRET_KEY_BASE: "your-secret-key",
    POSTGRES_URL: "postgresql://..."
  }
});

Deploy Custom Application

// Create a new application
const app = await createApp({
  projectId: "proj-123",
  name: "my-react-app",
  type: "dockerfile",
  gitRepository: {
    url: "https://github.com/user/react-app.git",
    branch: "main"
  },
  environment: {
    NODE_ENV: "production"
  },
  ports: [3000]
});

// Deploy it
const deployment = await deployApp({ id: app.id });

📦 Available Templates

Template Description Type Services
plausible Privacy-friendly analytics Docker Image PostgreSQL
strapi Headless CMS Git PostgreSQL, MySQL
saleor E-commerce platform Docker Image PostgreSQL, Redis
n8n Workflow automation Docker Image PostgreSQL, Redis
uptime-kuma Monitoring tool Docker Image -
gitlab Git repository manager Docker Image PostgreSQL, Redis
rocketchat Communication platform Docker Image MongoDB
bookstack Documentation platform Docker Image MySQL, PostgreSQL

See examples/tool-calls.md for detailed examples.

🔒 Security

  • API tokens are stored server-side and never exposed to AI agents
  • All inputs are validated with strict schemas
  • Project-level isolation prevents cross-project access
  • Built-in quota and rate limiting
  • Comprehensive audit logging

See docs/SECURITY.md for detailed security considerations.

📝 API Reference

The MCP server exposes the following endpoints through the Model Context Protocol:

Response Format

All responses follow this structure:

{
  "success": true,
  "data": { ... }
}

Or for errors:

{
  "success": false,
  "error": {
    "code": "ERROR_CODE",
    "message": "Human-readable error description"
  }
}

Error Codes

  • UNAUTHORIZED - Invalid API token
  • FORBIDDEN - Insufficient permissions
  • NOT_FOUND - Resource doesn't exist
  • CONFLICT - Resource conflict (e.g., duplicate name)
  • VALIDATION_ERROR - Invalid input data
  • RATE_LIMIT - Too many requests
  • QUOTA_EXCEEDED - Project quota exceeded
  • NETWORK_ERROR - Failed to connect to Coolify
  • UNKNOWN_ERROR - Unexpected error

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Commit your changes: git commit -m 'Add amazing feature'
  4. Push to the branch: git push origin feature/amazing-feature
  5. Open a Pull Request

Development Setup

# Install dependencies
npm install

# Run in development mode
npm run dev

# Run tests
npm test

# Lint code
npm run lint

# Format code
npm run format

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🆘 Support

🙏 Acknowledgments

  • Coolify - The amazing self-hosting platform
  • Model Context Protocol - The protocol that makes this possible
  • All contributors and users of this project

Built with ❤️ by the community

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选