Crawl-MCP
Unofficial MCP server wrapping crawl4ai that enables extraction and analysis of content from web pages, PDFs, Office documents, YouTube videos, and more, with AI-powered summarization and Google search integration to reduce token usage while preserving key information.
README
Crawl-MCP: Unofficial MCP Server for crawl4ai
⚠️ Important: This is an unofficial MCP server implementation for the excellent crawl4ai library.
Not affiliated with the original crawl4ai project.
A comprehensive Model Context Protocol (MCP) server that wraps the powerful crawl4ai library with advanced AI capabilities. Extract and analyze content from any source: web pages, PDFs, Office documents, YouTube videos, and more. Features intelligent summarization to dramatically reduce token usage while preserving key information.
🌟 Key Features
- 🔍 Google Search Integration - 7 optimized search genres with Google official operators
- 🔍 Advanced Web Crawling: JavaScript support, deep site mapping, entity extraction
- 🌐 Universal Content Extraction: Web pages, PDFs, Word docs, Excel, PowerPoint, ZIP archives
- 🤖 AI-Powered Summarization: Smart token reduction (up to 88.5%) while preserving essential information
- 🎬 YouTube Integration: Extract video transcripts and summaries without API keys
- ⚡ Production Ready: 13 specialized tools with comprehensive error handling
🚀 Quick Start
Prerequisites (Required First)
- Python 3.11 以上(FastMCP が Python 3.11+ を要求)
Install system dependencies for Playwright:
Ubuntu 24.04 LTS (Manual Required):
# Manual setup required due to t64 library transition
sudo apt update && sudo apt install -y \
libnss3 libatk-bridge2.0-0 libxss1 libasound2t64 \
libgbm1 libgtk-3-0t64 libxshmfence-dev libxrandr2 \
libxcomposite1 libxcursor1 libxdamage1 libxi6 \
fonts-noto-color-emoji fonts-unifont python3-venv python3-pip
python3 -m venv venv && source venv/bin/activate
pip install playwright==1.55.0 && playwright install chromium
sudo playwright install-deps
Other Linux/macOS:
sudo bash scripts/prepare_for_uvx_playwright.sh
Windows (as Administrator):
scripts/prepare_for_uvx_playwright.ps1
Installation
UVX (Recommended - Easiest):
# After system preparation above - that's it!
uvx --from git+https://github.com/walksoda/crawl-mcp crawl-mcp
Docker (Production-Ready):
# Clone the repository
git clone https://github.com/walksoda/crawl-mcp
cd crawl-mcp
# Build and run with Docker Compose (STDIO mode)
docker-compose up --build
# Or build and run HTTP mode on port 8000
docker-compose --profile http up --build crawl4ai-mcp-http
# Or build manually
docker build -t crawl4ai-mcp .
docker run -it crawl4ai-mcp
Docker Features:
- 🔧 Multi-Browser Support: Chromium, Firefox, Webkit headless browsers
- 🐧 Google Chrome: Additional Chrome Stable for compatibility
- ⚡ Optimized Performance: Pre-configured browser flags for Docker
- 🔒 Security: Non-root user execution
- 📦 Complete Dependencies: All required libraries included
Claude Desktop Setup
UVX Installation:
Add to your claude_desktop_config.json:
{
"mcpServers": {
"crawl-mcp": {
"transport": "stdio",
"command": "uvx",
"args": [
"--from",
"git+https://github.com/walksoda/crawl-mcp",
"crawl-mcp"
],
"env": {
"CRAWL4AI_LANG": "en"
}
}
}
}
Docker HTTP Mode:
{
"mcpServers": {
"crawl-mcp": {
"transport": "http",
"baseUrl": "http://localhost:8000"
}
}
}
For Japanese interface:
"env": {
"CRAWL4AI_LANG": "ja"
}
📖 Documentation
| Topic | Description |
|---|---|
| Installation Guide | Complete installation instructions for all platforms |
| API Reference | Full tool documentation and usage examples |
| Configuration Examples | Platform-specific setup configurations |
| HTTP Integration | HTTP API access and integration methods |
| Advanced Usage | Power user techniques and workflows |
| Development Guide | Contributing and development setup |
Language-Specific Documentation
🛠️ Tool Overview
Web Crawling
crawl_url- Single page crawling with JavaScript supportdeep_crawl_site- Multi-page site mapping and explorationcrawl_url_with_fallback- Robust crawling with retry strategiesbatch_crawl- Process multiple URLs (max 5)multi_url_crawl- Advanced multi-URL configuration
Search Integration
search_google- Genre-filtered Google searchsearch_and_crawl- Combined search and content extractionbatch_search_google- Multiple search queries (max 3)
Data Extraction
extract_structured_data- CSS/XPath/LLM-based structured extraction
Media Processing
process_file- PDF, Office, ZIP to markdown conversionextract_youtube_transcript- Video transcript extractionbatch_extract_youtube_transcripts- Multiple videos (max 3)get_youtube_video_info- Video metadata retrieval
🎯 Common Use Cases
Content Research:
search_and_crawl → extract_structured_data → analysis
Documentation Mining:
deep_crawl_site → batch processing → extraction
Media Analysis:
extract_youtube_transcript → summarization workflow
Site Mapping:
batch_crawl → multi_url_crawl → comprehensive data
🚨 Quick Troubleshooting
Installation Issues:
- Re-run setup scripts with proper privileges
- Try development installation method
- Check browser dependencies are installed
Performance Issues:
- Use
wait_for_js: truefor JavaScript-heavy sites - Increase timeout for slow-loading pages
- Use
extract_structured_datafor targeted extraction
Configuration Issues:
- Check JSON syntax in
claude_desktop_config.json - Verify file paths are absolute
- Restart Claude Desktop after configuration changes
🏗️ Project Structure
- Original Library: crawl4ai by unclecode
- MCP Wrapper: This repository (walksoda)
- Implementation: Unofficial third-party integration
📄 License
This project is an unofficial wrapper around the crawl4ai library. Please refer to the original crawl4ai license for the underlying functionality.
🤝 Contributing
See our Development Guide for contribution guidelines and development setup instructions.
🔗 Related Projects
- crawl4ai - The underlying web crawling library
- Model Context Protocol - The standard this server implements
- Claude Desktop - Primary client for MCP servers
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。