Crawl4AI MCP Wrapper
Enables web scraping, crawling, and content extraction through Crawl4AI Docker API. Supports markdown extraction, screenshots, PDFs, JavaScript execution, and multi-URL crawling with reliable stdio transport.
README
Crawl4AI MCP Wrapper
Custom Model Context Protocol (MCP) server that wraps the Crawl4AI Docker API with reliable stdio transport for Claude Code integration.
Overview
This MCP wrapper provides 7 tools for web scraping, crawling, and content extraction:
- scrape_markdown - Extract clean markdown from webpages
- extract_html - Get preprocessed HTML structures
- capture_screenshot - Take full-page PNG screenshots
- generate_pdf - Create PDF documents from webpages
- execute_javascript - Run JavaScript in browser context
- crawl_urls - Crawl multiple URLs with configuration options
- ask_crawl4ai - Query Crawl4AI documentation and examples
Prerequisites
- Python 3.8 or higher
- Crawl4AI Docker container running on port 11235
- Claude Code installed
Installation
1. Start Crawl4AI Docker Container
docker run -d -p 11235:11235 --name crawl4ai --shm-size=2g unclecode/crawl4ai:latest
Verify it's running:
curl http://localhost:11235/health
2. Set Up Virtual Environment
cd /Volumes/4TB/Users/josephmcmyne/myProjects/mcp/crawl4ai-wrapper
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
3. Test the Wrapper
python test_wrapper.py
You should see all tests pass:
✅ All tests passed! MCP wrapper is ready to use.
Configuration
For Claude Code (Project-Level)
Add to /Volumes/4TB/Users/josephmcmyne/general/.mcp.json:
{
"mcpServers": {
"iterm-mcp": {
"args": ["-y", "iterm-mcp"],
"command": "npx"
},
"crawl4ai-custom": {
"command": "/Volumes/4TB/Users/josephmcmyne/myProjects/mcp/crawl4ai-wrapper/venv/bin/python",
"args": ["/Volumes/4TB/Users/josephmcmyne/myProjects/mcp/crawl4ai-wrapper/crawl4ai_mcp.py"],
"env": {
"CRAWL4AI_BASE_URL": "http://localhost:11235"
}
}
}
}
For Claude Code (Global)
Add to ~/.claude/claude_desktop_config.json (if this file exists):
{
"mcpServers": {
"crawl4ai-custom": {
"command": "/Volumes/4TB/Users/josephmcmyne/myProjects/mcp/crawl4ai-wrapper/venv/bin/python",
"args": ["/Volumes/4TB/Users/josephmcmyne/myProjects/mcp/crawl4ai-wrapper/crawl4ai_mcp.py"],
"env": {
"CRAWL4AI_BASE_URL": "http://localhost:11235"
}
}
}
}
Usage
Restart Claude Code
After configuration, restart Claude Code to load the new MCP server.
Verify Connection
claude mcp list
You should see:
crawl4ai-custom: ... - ✓ Connected
Use in Claude Code
Example prompts:
Scrape the content from https://example.com and summarize it.
Take a screenshot of https://github.com
Crawl these URLs and extract their main content: https://example.com, https://example.org
Tool Reference
scrape_markdown
Extract clean markdown from a webpage.
Parameters:
url(required): URL to scrapefilter_type(optional): 'fit', 'raw', 'bm25', or 'llm' (default: 'fit')query(optional): Query string for BM25/LLM filterscache_bust(optional): Cache-bust counter (default: '0')
Example:
result = await scrape_markdown("https://example.com")
extract_html
Get preprocessed HTML from a webpage.
Parameters:
url(required): URL to extract HTML from
capture_screenshot
Capture a full-page PNG screenshot.
Parameters:
url(required): URL to screenshotscreenshot_wait_for(optional): Seconds to wait before capture (default: 2.0)output_path(optional): Path to save the screenshot file
generate_pdf
Generate a PDF document from a webpage.
Parameters:
url(required): URL to convert to PDFoutput_path(optional): Path to save the PDF file
execute_javascript
Run JavaScript code on a webpage.
Parameters:
url(required): URL to execute scripts onscripts(required): List of JavaScript snippets to execute
crawl_urls
Crawl multiple URLs with configuration.
Parameters:
urls(required): List of 1-100 URLs to crawlbrowser_config(optional): Browser configuration overridescrawler_config(optional): Crawler configuration overrideshooks(optional): Custom hook functions
ask_crawl4ai
Query Crawl4AI documentation.
Parameters:
query(required): Search querycontext_type(optional): 'code', 'doc', or 'all' (default: 'all')score_ratio(optional): Minimum score threshold (default: 0.5)max_results(optional): Maximum results (default: 20)
Troubleshooting
Container Not Running
If tests fail with connection errors:
docker ps | grep crawl4ai
If not running, start it:
docker start crawl4ai
MCP Server Not Connecting
Check Claude Code logs:
tail -f ~/Library/Logs/Claude/mcp*.log
Verify the Python path in your .mcp.json is correct:
which python
# Should match the venv path in your config
Port Conflicts
If port 11235 is in use:
- Stop the Crawl4AI container:
docker stop crawl4ai - Find the conflicting process:
lsof -i :11235 - Either stop that process or change the port in both Docker and this wrapper
Development
Adding New Tools
To add a new tool:
- Add an async function decorated with
@mcp.tool()incrawl4ai_mcp.py - Make an HTTP request to the appropriate Crawl4AI endpoint
- Add error handling
- Add a test in
test_wrapper.py - Update this README
Running in Debug Mode
# Enable debug logging
export CRAWL4AI_MCP_LOG=DEBUG
# Run the server
python crawl4ai_mcp.py
Architecture
┌─────────────────┐
│ Claude Code │
└────────┬────────┘
│ stdio (MCP protocol)
▼
┌─────────────────┐
│ FastMCP Server │ (this wrapper)
│ crawl4ai_mcp.py│
└────────┬────────┘
│ HTTP/REST API
▼
┌─────────────────┐
│ Crawl4AI Docker │
│ Container │
│ (port 11235) │
└─────────────────┘
Benefits Over Official SSE Server
- Reliable stdio transport: No SSE connection issues
- Full control: Easy to extend and customize
- Better error handling: Graceful degradation
- Simple debugging: Standard Python stack traces
- No protocol mismatches: Direct HTTP to Crawl4AI API
License
MIT License - feel free to modify and distribute.
Credits
- Built with FastMCP
- Wraps Crawl4AI
- For use with Claude Code
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。