CrowdCent MCP Server
Enables AI assistants to interact with CrowdCent's prediction challenges, allowing them to access challenges, download datasets, submit predictions, and monitor submissions through natural language commands.
README
CrowdCent MCP Server
A Model Context Protocol (MCP) server that provides seamless integration with the CrowdCent Challenge API, enabling AI assistants to interact with CrowdCent's prediction challenges directly.
<div align="center"> <img src="/assets/startup.png" alt="MCP Server" /> </div>
Overview
This MCP server allows AI assistants like Claude Desktop and Cursor to:
- Access and manage CrowdCent challenges
- Download training and inference datasets
- Submit predictions
- Monitor submissions
- Access meta models
Prerequisites
- Python 3.12+
- uv (Python package manager)
- CrowdCent API key (get one at crowdcent.com)
Installation
- Clone this repository:
git clone https://github.com/crowdcent/crowdcent-mcp.git
cd crowdcent-mcp
- (Optional) Install dependencies with uv:
uv venv
uv pip install -e .
Configuration
Setting up your API key
Create a .env file in the project root:
CROWDCENT_API_KEY=your_api_key_here
Cursor Setup
Add the following to your Cursor settings (~/.cursor/mcp.json or through Cursor Settings UI):
{
"mcpServers": {
"crowdcent-mcp": {
"command": "/path/to/.cargo/bin/uv",
"args": ["run",
"--directory",
"/path/to/crowdcent-mcp",
"server.py"
]
}
}
}
Replace /path/to/ with your actual paths. For example:
/home/username/.cargo/bin/uvon Linux/Users/username/.cargo/bin/uvon macOSC:\\Users\\username\\.cargo\\bin\\uvon Windows
Claude Desktop Setup
For Claude Desktop, add the following to your configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
Linux: ~/.config/Claude/claude_desktop_config.json
{
"mcpServers": {
"crowdcent-mcp": {
"command": "uv",
"args": ["run",
"--directory",
"/path/to/crowdcent-mcp",
"server.py"
]
}
}
}
Usage Examples
After configuring the MCP server in your AI assistant, you can use natural language to interact with CrowdCent:
"Download data, train a model, and submit predictions to the crowdcent challenge!"
"Download the crowdcent training data and do some EDA"
"Create time series folds for the crowdcent challenge and train/evaluate a model"
Troubleshooting
MCP server not connecting
- Ensure uv is installed and in your PATH
- Check that the directory path in your config is correct
- Verify the server.py file has execute permissions
API key issues
- Make sure your API key is valid
- Check if it's properly set in .env or passed to init_client
Submission errors
- Ensure your predictions file has the required columns:
id,pred_10d,pred_30d - Check that all asset IDs match the current inference period
- Verify submission window is still open (within 4 hours of inference data release)
Resources
- CrowdCent Documentation
- Hyperliquid Ranking Challenge
- MCP Documentation
- CrowdCent Challenge Python Client
Support
For issues with:
- This MCP server: Open an issue in this repository
- CrowdCent API: Email info@crowdcent.com or join our Discord
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。