
Crowdlistening
Crowdlistening
README
TikTok MCP Service
A Model Context Protocol service for TikTok video discovery and metadata extraction. This service provides a robust interface for searching TikTok videos by hashtags and retrieving trending content, with built-in anti-detection measures and error handling.
Features
- Search videos by hashtags
- Configurable video count per search (default: 30)
- Anti-bot detection measures
- Proxy support
- Automatic API session management
- Rate limiting and error handling
- Health status monitoring
Configuration
The service uses environment variables for configuration. Create a .env
file with:
ms_token=your_tiktok_ms_token # Optional but recommended to avoid bot detection
TIKTOK_PROXY=your_proxy_url # Optional proxy configuration
Installation and Setup
# Install dependencies
poetry install
# Install browser automation dependencies
poetry run python -m playwright install
# Start the service
poetry run python -m tiktok_mcp_service.main
Claude Desktop Integration
Once your service is running, you can integrate it with Claude Desktop. Since we're using Poetry for dependency management, make sure to run the MCP CLI commands through Poetry:
# Navigate to the project directory
cd /path/to/tiktok-mcp-service
# Install the service in Claude Desktop with Poetry in editable mode
poetry run mcp install tiktok_mcp_service/main.py --with-editable . -f .env
# Optional: Install with a custom name
poetry run mcp install tiktok_mcp_service/main.py --name "TikTok Video Search" --with-editable . -f .env
After installation, the service will be available in Claude Desktop and will run using Poetry for proper dependency management.
API Endpoints
Health Check
GET /health
- Check service health and API initialization status{ "status": "running", "api_initialized": true, "service": { "name": "TikTok MCP Service", "version": "0.1.0", "description": "A Model Context Protocol service for searching TikTok videos" } }
Search Videos
POST /search
- Search for videos with hashtags
Response includes video URLs, descriptions, and engagement statistics (views, likes, shares, comments).{ "search_terms": ["python", "coding"], "count": 30 // Optional, defaults to 30 }
Resource Management
POST /cleanup
- Clean up resources and API sessions
Error Handling
The service includes comprehensive error handling for:
- API initialization failures
- Bot detection issues
- Network errors
- Rate limiting
- Invalid search terms
Development
Built with:
- TikTokApi
- FastMCP
- Poetry for dependency management
- Playwright for browser automation
License
MIT# tiktok_mcp
TikTok API Limitations
Important Notice: TikTok has implemented strict anti-scraping measures that limit API access. As a result, this service provides the following functionality:
-
Mock Data Mode: When TikTok blocks API access (which is currently the case), the service provides realistic-looking simulated results that are relevant to the search terms. This ensures that your Claude integration continues to function even when TikTok restricts access.
-
API Access Attempts: The service still attempts to use the TikTok API first, but will quickly fall back to mock data if the API is unavailable or returns errors.
-
Transparency: When mock data is provided, this is clearly indicated in the response via the
transformations
field, which includes a note explaining that simulated results are being shown.
This implementation ensures your service remains operational despite TikTok's anti-scraping measures.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。