Crypto MCP Server

Crypto MCP Server

Provides real-time and historical cryptocurrency market data from 100+ exchanges including prices, OHLCV data, market statistics, and order books through the CCXT library with intelligent caching.

Category
访问服务器

README

Crypto MCP Server

A Python-based Model Context Protocol (MCP) server that provides real-time and historical cryptocurrency market data from major exchanges using the CCXT library.

🚀 Features

  • Real-time Price Data: Fetch current prices for any cryptocurrency trading pair
  • Historical Data: Retrieve OHLCV (Open, High, Low, Close, Volume) historical data
  • Market Statistics: Get comprehensive market summaries including 24h changes
  • Order Book Data: Access current bid/ask order books
  • Multi-Exchange Support: Works with 100+ cryptocurrency exchanges via CCXT
  • Intelligent Caching: Reduces API calls with built-in caching layer
  • Error Handling: Robust error handling and validation
  • Comprehensive Testing: Full test coverage with pytest

📋 Requirements

  • Python 3.10 or higher
  • pip (Python package manager)
  • Internet connection for API access

🔧 Installation

  1. Clone the repository:
git clone <your-repo-url>
cd crypto-mcp-server
  1. Create a virtual environment (recommended):
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt

🏃 Usage

Running the Server

Start the MCP server:

python -m src.crypto_mcp_server.server

Available Tools

The server exposes the following MCP tools:

  1. get_crypto_price: Get current price for a cryptocurrency pair

    • Parameters: symbol (e.g., "BTC/USDT"), use_cache (optional)
  2. get_multiple_prices: Get prices for multiple pairs

    • Parameters: symbols (list of trading pairs)
  3. get_historical_data: Get historical OHLCV data

    • Parameters: symbol, timeframe (e.g., "1d"), limit, use_cache
  4. get_market_summary: Get comprehensive market statistics

    • Parameters: symbol, use_cache
  5. get_orderbook: Get current order book

    • Parameters: symbol, limit
  6. search_symbols: Search for available trading pairs

    • Parameters: query (e.g., "BTC")
  7. get_supported_exchanges: List all supported exchanges

    • No parameters required
  8. clear_cache: Clear all cached data

    • No parameters required
  9. get_cache_stats: Get cache statistics

    • No parameters required

Example Usage with MCP Client

# Example: Get Bitcoin price
{
  "tool": "get_crypto_price",
  "arguments": {
    "symbol": "BTC/USDT"
  }
}

# Example: Get historical data
{
  "tool": "get_historical_data",
  "arguments": {
    "symbol": "ETH/USDT",
    "timeframe": "1h",
    "limit": 24
  }
}

🧪 Testing

Run all tests:

pytest

Run tests with coverage:

pytest --cov=src/crypto_mcp_server --cov-report=html

Run specific test file:

pytest tests/test_crypto_api.py -v

Test Coverage

The project includes comprehensive tests for:

  • ✅ API wrapper functionality
  • ✅ Caching layer
  • ✅ MCP server tools
  • ✅ Error handling
  • ✅ Edge cases

📁 Project Structure

crypto-mcp-server/
├── src/
│   └── crypto_mcp_server/
│       ├── __init__.py          # Package initialization
│       ├── server.py            # Main MCP server
│       ├── crypto_api.py        # CCXT API wrapper
│       └── cache.py             # Caching layer
├── tests/
│   ├── test_server.py           # Server tests
│   ├── test_crypto_api.py       # API tests
│   └── test_cache.py            # Cache tests
├── requirements.txt             # Python dependencies
├── README.md                    # This file
└── .gitignore                   # Git ignore rules

🔑 Key Design Decisions

1. Exchange Selection

  • Default Exchange: Binance
  • Rationale: Binance is one of the largest and most reliable exchanges with excellent API support
  • Flexibility: Can be configured to use any of 100+ exchanges supported by CCXT

2. Caching Strategy

  • TTL Values:
    • Real-time prices: 30 seconds
    • Historical data: 5 minutes
    • Market summaries: 1 minute
  • Rationale: Balances data freshness with API rate limit compliance

3. Error Handling

  • All API calls wrapped in try-catch blocks
  • Graceful degradation for partial failures
  • Detailed error messages for debugging

4. Data Validation

  • Symbol format validation
  • Timeframe validation
  • Limit parameter validation

🛠️ Configuration

Changing the Default Exchange

Edit server.py:

server = CryptoMCPServer(
    exchange_id='coinbase',  # Change to any supported exchange
    cache_ttl=60
)

Adjusting Cache TTL

server = CryptoMCPServer(
    exchange_id='binance',
    cache_ttl=120  # 2 minutes default cache
)

🔍 Assumptions

  1. Network Connectivity: Assumes stable internet connection
  2. Exchange Availability: Assumes target exchange APIs are operational
  3. Rate Limits: Built-in rate limiting through CCXT's enableRateLimit
  4. Data Format: Assumes standard CCXT data formats
  5. No Authentication: Uses public endpoints (no API keys required)

📊 Performance Considerations

  • Caching: Reduces API calls by up to 90% for repeated queries
  • Rate Limiting: Automatically managed by CCXT
  • Concurrent Requests: Handles multiple simultaneous requests
  • Memory Usage: In-memory cache with automatic cleanup

🐛 Known Limitations

  1. Historical Data: Limited by exchange-specific restrictions
  2. Real-time Updates: Not true WebSocket streaming (polling-based)
  3. Authentication: Only public endpoints supported currently
  4. Cache Persistence: Cache is in-memory only (not persistent)

🔮 Future Enhancements

  • [ ] WebSocket support for true real-time updates
  • [ ] Support for authenticated endpoints
  • [ ] Persistent cache (Redis/SQLite)
  • [ ] Multi-exchange aggregation
  • [ ] CoinMarketCap integration
  • [ ] Custom alerts and notifications
  • [ ] Portfolio tracking

📝 License

MIT License - Feel free to use this project for your needs.

🙏 Acknowledgments

📧 Contact

For questions or issues, please open an issue on GitHub.


Note: This project was developed as part of an internship assignment. It demonstrates proficiency in Python development, API integration, testing, and MCP protocol implementation.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选