Crypto-Signal MCP
Provides cryptocurrency trading signals, market analysis, and portfolio management capabilities across 15+ exchanges with AI-enhanced technical analysis, arbitrage detection, and risk assessment tools.
README
Crypto-Signal MCP
Model Context Protocol (MCP) server implementation for Crypto-Signal, providing advanced cryptocurrency trading signals, market analysis, and portfolio management capabilities.
Features
- Multi-Exchange Market Intelligence: Aggregate and analyze data across 15+ exchanges
- Advanced Signal Generation: AI-enhanced technical analysis with ML model integration
- Portfolio Optimization: Risk-adjusted portfolio management tools
- Intelligent Alerting System: Context-aware notifications with social sentiment integration
- Market Opportunity Scanner: Detect arbitrage, anomalies, and trading opportunities
Quick Start
# Clone the repository
git clone https://github.com/myownipgit/crypto-signal-mcp.git
cd crypto-signal-mcp
# Install dependencies
npm install
# Start MCP server
npm run start
Server Architecture
This MCP server implementation uses:
- JSON-RPC 2.0: Standard protocol for remote procedure calls
- Multiple Transports: Supports both stdio (for Claude Desktop) and HTTP/WebSocket transports
- Modular Tool Structure: Organized by functional categories for easy extension
MCP Tools
The server provides several tool categories:
Market Intelligence Tools
getAggregatedOrderBook- Consolidated order books across exchangesgetArbitrageOpportunities- Cross-exchange price differential detectionanalyzeLiquidity- In-depth liquidity analysis by exchangegetMarketDepth- Detailed order book and market microstructure analysis
Signal Generation Tools
generateSignals- AI-enhanced signal generation based on technical indicatorsbacktestStrategy- Historical performance testing for trading strategiesoptimizeStrategy- Machine learning parameter optimizationdetectPatterns- Technical chart pattern recognition
Portfolio Management Tools
optimizePortfolio- Modern Portfolio Theory optimizationcalculateVaR- Value at Risk calculation for crypto portfoliosrebalancePortfolio- Intelligent portfolio rebalancingrunStressTest- Portfolio stress testing with various scenarios
Alert System Tools
createSmartAlert- Multi-condition alert creationanalyzeSocialSentiment- Social media sentiment analysisprioritizeAlerts- Context-aware alert routingcreatePredictiveAlert- Future-oriented alerts based on ML predictions
Configuration
Configure your MCP connection in Claude Desktop by adding to claude_desktop_config.json:
"mcpServers": {
"crypto-signal": {
"command": "node",
"args": ["/path/to/crypto-signal-mcp/server.js"],
"env": {}
}
}
Make sure to replace /path/to/crypto-signal-mcp with the actual path to where you cloned the repository.
HTTP/WebSocket Usage
The server can also be started in HTTP mode:
MCP_TRANSPORT=http MCP_PORT=3000 npm start
This will start the server on port 3000 with both HTTP and WebSocket endpoints:
- HTTP: POST to
/rpcwith JSON-RPC request body - WebSocket: Connect to ws://localhost:3000 and send/receive JSON-RPC messages
Integration Examples
See the /examples directory for sample implementations demonstrating each feature set:
- Arbitrage Detection Dashboard
- Portfolio Optimization Visualization
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。