CryptoSignal-MCP

CryptoSignal-MCP

AI-Powered Cryptocurrency Direction Prediction & Market Signal Analysis

Category
访问服务器

README

<div align="center">

📈 CryptoSignal MCP

Python MCP License Binance

AI-Powered Cryptocurrency Direction Prediction & Market Signal Analysis

Powered by Machine Learning Ensemble Models with 30+ Technical Indicators

FeaturesInstallationAPI ToolsExamplesIndicators

</div>

🎬 Demo

<div align="center"> <img src="demo.png" alt="CryptoSignal MCP Demo" width="500"> <p><em>CryptoSignal MCP in action - Real-time crypto direction predictions with confidence scores</em></p> </div>


✨ Features

Feature Description
🧠 Advanced ML Predictions Ensemble models (Random Forest + Gradient Boosting) with 30+ technical indicators
📊 Comprehensive Technical Analysis RSI, MACD, Bollinger Bands, Stochastic, Williams %R, ATR, and more
Multiple Timeframes Support for 1m, 3m, 5m, 15m, 30m, 1h, 2h, 4h, 6h, 8h, 12h, 1d, 3d, 1w, 1M
🔄 Real-time Data Live market data from Binance API with intelligent rate limiting and caching
🎯 Smart Filtering Automatically filters incomplete trading periods for accurate analysis
🔍 WebSearch Integration Optimized search queries for Claude Code's WebSearch tool with sentiment analysis prompts
📊 Polymarket Trader Analysis Monitor successful crypto traders' activities, positions, and trading patterns for behavioral insights

🚀 Installation

Prerequisites

  • Python 3.11+
  • Required packages (automatically installed)

Quick Start

# Clone the repository
git clone https://github.com/khalilbalaree/CryptoSignal-MCP.git
cd CryptoSignal-MCP

# Install dependencies
pip install -r requirements.txt

# Run the server
python crypto_predictor_server.py

🔧 MCP Integration

With Claude Desktop

Add this server to your Claude Desktop configuration:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "cryptosignal-mcp": {
      "command": "python",
      "args": ["/path/to/CryptoSignal-MCP/crypto_predictor_server.py"],
      "env": {}
    }
  }
}

🛠️ API Tools

🎯 predict_crypto_direction

Advanced ML prediction using ensemble models to predict price direction

predict_crypto_direction(
    symbol="BTCUSDT",           # Trading pair
    interval="1h",              # Time interval (default: 1h)
    training_periods=1000       # Training data size (default: 1000)
)

Supported Intervals: 1m 3m 5m 15m 30m 1h 2h 4h 6h 8h 12h 1d 3d 1w 1M

Returns: Prediction direction, confidence scores, model performance, market context, feature importance, risk assessment


📈 analyze_crypto_indicators

Fast technical analysis without ML training - immediate market insights

analyze_crypto_indicators(
    symbol="ETHUSDT",           # Trading pair
    interval="1h",              # Time interval (default: 1h)
    limit=100,                  # Data points (default: 100)
    short_period=5,             # Short-term period (default: 5)
    medium_period=10,           # Medium-term period (default: 10)
    long_period=20              # Long-term period (default: 20)
)

Returns: Moving averages, trends, momentum analysis, volatility metrics, support/resistance levels, trend signals


🔍 get_crypto_news_search

Generate optimized search queries for Claude Code's WebSearch tool

get_crypto_news_search(
    symbol="bitcoin"            # Crypto symbol (default: bitcoin)
)

Returns: Structured search data including optimized queries, reliable domains, and analysis prompts for use with Claude Code's WebSearch tool


📊 monitor_polymarket_trader

Analyze successful crypto traders' positions and patterns on Polymarket

monitor_polymarket_trader(
    trader_address="0x1234567890abcdef1234567890abcdef12345678",  # Ethereum wallet address
    limit=100                                                    # Activities to fetch (default: 100)
)

Returns: Complete trading activity history including positions, bet sizes, outcomes, timing, and P&L performance across crypto prediction markets

💡 Usage Examples

<details> <summary><b>🔰 Basic Predictions</b></summary>

# Get ML prediction for Bitcoin (1-hour timeframe)
predict_crypto_direction("BTCUSDT", "1h", 1000)

# Quick technical analysis for Ethereum (4-hour timeframe)
analyze_crypto_indicators("ETHUSDT", "4h", 200)

# Get search query for Bitcoin news analysis
get_crypto_news_search("bitcoin")

# Monitor successful crypto trader's activities
monitor_polymarket_trader("0x1234567890abcdef1234567890abcdef12345678", 100)

</details>

<details> <summary><b>⚡ Advanced Trading Scenarios</b></summary>

# Short-term scalping prediction (15-minute intervals)
predict_crypto_direction("BTCUSDT", "15m", 500)

# Long-term investment analysis (daily timeframe)
analyze_crypto_indicators("ETHUSDT", "1d", 365, 10, 20, 50)

# Custom altcoin analysis
analyze_crypto_indicators("ADAUSDT", "2h", 100, 3, 7, 14)

# Multi-timeframe analysis
for timeframe in ["1h", "4h", "1d"]:
    analyze_crypto_indicators("BTCUSDT", timeframe)

# Copy trading successful traders
successful_traders = [
    "0x1234567890abcdef1234567890abcdef12345678",
    "0xabcdef1234567890abcdef1234567890abcdef12"
]
for trader in successful_traders:
    monitor_polymarket_trader(trader, 100)

</details>

📊 Technical Indicators

Our ML models leverage 30+ advanced technical indicators across multiple categories:

<div align="center">

Category Indicators
📈 Price & Momentum Price change, acceleration, velocity<br/>Momentum (3, 5, 10, 20 periods)<br/>Rate of change, Sharpe ratio
📉 Moving Averages Simple MA (5, 10, 20, 50)<br/>Exponential MA (5, 12, 26, 50)<br/>MA ratios and crossover signals
🎯 Oscillators RSI (7, 14 periods)<br/>Stochastic Oscillator (K%, D%)<br/>Williams %R
🔊 Volume Analysis Volume ratios and rate of change<br/>On-Balance Volume (OBV)<br/>Volume spikes and trends
📐 Volatility & Bands Bollinger Bands (width, position)<br/>Average True Range (ATR)<br/>Volatility regimes
🏗️ Market Structure Support/resistance levels<br/>Fractal patterns (local max/min)<br/>Trend strength and regime detection

</div>

🎯 Model Architecture

graph TD
    A[Historical Data] --> B[Feature Engineering]
    B --> C[30+ Technical Indicators]
    C --> D[Data Preprocessing]
    D --> E[Ensemble Models]
    E --> F[Random Forest]
    E --> G[Gradient Boosting]
    E --> H[Extra Trees]
    F --> I[Voting Classifier]
    G --> I
    H --> I
    I --> J[Prediction + Confidence]

⚠️ Risk Disclaimer

🚨 IMPORTANT: This tool is designed for educational and research purposes only.

Cryptocurrency trading involves significant financial risk. Past performance does not guarantee future results. Always:

  • Conduct your own research and analysis
  • Implement proper risk management strategies
  • Never invest more than you can afford to lose
  • Consider seeking advice from qualified financial professionals

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.


<div align="center">

Built with ❤️ for the crypto community

⭐ Star this repo🐛 Report Issues💡 Request Features

</div>

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选