
CryptoSignal-MCP
AI-Powered Cryptocurrency Direction Prediction & Market Signal Analysis
README
<div align="center">
📈 CryptoSignal MCP
AI-Powered Cryptocurrency Direction Prediction & Market Signal Analysis
Powered by Machine Learning Ensemble Models with 30+ Technical Indicators
Features • Installation • API Tools • Examples • Indicators
</div>
🎬 Demo
<div align="center"> <img src="demo.png" alt="CryptoSignal MCP Demo" width="500"> <p><em>CryptoSignal MCP in action - Real-time crypto direction predictions with confidence scores</em></p> </div>
✨ Features
Feature | Description |
---|---|
🧠 Advanced ML Predictions | Ensemble models (Random Forest + Gradient Boosting) with 30+ technical indicators |
📊 Comprehensive Technical Analysis | RSI, MACD, Bollinger Bands, Stochastic, Williams %R, ATR, and more |
⏰ Multiple Timeframes | Support for 1m, 3m, 5m, 15m, 30m, 1h, 2h, 4h, 6h, 8h, 12h, 1d, 3d, 1w, 1M |
🔄 Real-time Data | Live market data from Binance API with intelligent rate limiting and caching |
🎯 Smart Filtering | Automatically filters incomplete trading periods for accurate analysis |
🔍 WebSearch Integration | Optimized search queries for Claude Code's WebSearch tool with sentiment analysis prompts |
📊 Polymarket Trader Analysis | Monitor successful crypto traders' activities, positions, and trading patterns for behavioral insights |
🚀 Installation
Prerequisites
- Python 3.11+
- Required packages (automatically installed)
Quick Start
# Clone the repository
git clone https://github.com/khalilbalaree/CryptoSignal-MCP.git
cd CryptoSignal-MCP
# Install dependencies
pip install -r requirements.txt
# Run the server
python crypto_predictor_server.py
🔧 MCP Integration
With Claude Desktop
Add this server to your Claude Desktop configuration:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"cryptosignal-mcp": {
"command": "python",
"args": ["/path/to/CryptoSignal-MCP/crypto_predictor_server.py"],
"env": {}
}
}
}
🛠️ API Tools
🎯 predict_crypto_direction
Advanced ML prediction using ensemble models to predict price direction
predict_crypto_direction(
symbol="BTCUSDT", # Trading pair
interval="1h", # Time interval (default: 1h)
training_periods=1000 # Training data size (default: 1000)
)
Supported Intervals: 1m
3m
5m
15m
30m
1h
2h
4h
6h
8h
12h
1d
3d
1w
1M
Returns: Prediction direction, confidence scores, model performance, market context, feature importance, risk assessment
📈 analyze_crypto_indicators
Fast technical analysis without ML training - immediate market insights
analyze_crypto_indicators(
symbol="ETHUSDT", # Trading pair
interval="1h", # Time interval (default: 1h)
limit=100, # Data points (default: 100)
short_period=5, # Short-term period (default: 5)
medium_period=10, # Medium-term period (default: 10)
long_period=20 # Long-term period (default: 20)
)
Returns: Moving averages, trends, momentum analysis, volatility metrics, support/resistance levels, trend signals
🔍 get_crypto_news_search
Generate optimized search queries for Claude Code's WebSearch tool
get_crypto_news_search(
symbol="bitcoin" # Crypto symbol (default: bitcoin)
)
Returns: Structured search data including optimized queries, reliable domains, and analysis prompts for use with Claude Code's WebSearch tool
📊 monitor_polymarket_trader
Analyze successful crypto traders' positions and patterns on Polymarket
monitor_polymarket_trader(
trader_address="0x1234567890abcdef1234567890abcdef12345678", # Ethereum wallet address
limit=100 # Activities to fetch (default: 100)
)
Returns: Complete trading activity history including positions, bet sizes, outcomes, timing, and P&L performance across crypto prediction markets
💡 Usage Examples
<details> <summary><b>🔰 Basic Predictions</b></summary>
# Get ML prediction for Bitcoin (1-hour timeframe)
predict_crypto_direction("BTCUSDT", "1h", 1000)
# Quick technical analysis for Ethereum (4-hour timeframe)
analyze_crypto_indicators("ETHUSDT", "4h", 200)
# Get search query for Bitcoin news analysis
get_crypto_news_search("bitcoin")
# Monitor successful crypto trader's activities
monitor_polymarket_trader("0x1234567890abcdef1234567890abcdef12345678", 100)
</details>
<details> <summary><b>⚡ Advanced Trading Scenarios</b></summary>
# Short-term scalping prediction (15-minute intervals)
predict_crypto_direction("BTCUSDT", "15m", 500)
# Long-term investment analysis (daily timeframe)
analyze_crypto_indicators("ETHUSDT", "1d", 365, 10, 20, 50)
# Custom altcoin analysis
analyze_crypto_indicators("ADAUSDT", "2h", 100, 3, 7, 14)
# Multi-timeframe analysis
for timeframe in ["1h", "4h", "1d"]:
analyze_crypto_indicators("BTCUSDT", timeframe)
# Copy trading successful traders
successful_traders = [
"0x1234567890abcdef1234567890abcdef12345678",
"0xabcdef1234567890abcdef1234567890abcdef12"
]
for trader in successful_traders:
monitor_polymarket_trader(trader, 100)
</details>
📊 Technical Indicators
Our ML models leverage 30+ advanced technical indicators across multiple categories:
<div align="center">
Category | Indicators |
---|---|
📈 Price & Momentum | Price change, acceleration, velocity<br/>Momentum (3, 5, 10, 20 periods)<br/>Rate of change, Sharpe ratio |
📉 Moving Averages | Simple MA (5, 10, 20, 50)<br/>Exponential MA (5, 12, 26, 50)<br/>MA ratios and crossover signals |
🎯 Oscillators | RSI (7, 14 periods)<br/>Stochastic Oscillator (K%, D%)<br/>Williams %R |
🔊 Volume Analysis | Volume ratios and rate of change<br/>On-Balance Volume (OBV)<br/>Volume spikes and trends |
📐 Volatility & Bands | Bollinger Bands (width, position)<br/>Average True Range (ATR)<br/>Volatility regimes |
🏗️ Market Structure | Support/resistance levels<br/>Fractal patterns (local max/min)<br/>Trend strength and regime detection |
</div>
🎯 Model Architecture
graph TD
A[Historical Data] --> B[Feature Engineering]
B --> C[30+ Technical Indicators]
C --> D[Data Preprocessing]
D --> E[Ensemble Models]
E --> F[Random Forest]
E --> G[Gradient Boosting]
E --> H[Extra Trees]
F --> I[Voting Classifier]
G --> I
H --> I
I --> J[Prediction + Confidence]
⚠️ Risk Disclaimer
🚨 IMPORTANT: This tool is designed for educational and research purposes only.
Cryptocurrency trading involves significant financial risk. Past performance does not guarantee future results. Always:
- Conduct your own research and analysis
- Implement proper risk management strategies
- Never invest more than you can afford to lose
- Consider seeking advice from qualified financial professionals
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
<div align="center">
Built with ❤️ for the crypto community
⭐ Star this repo • 🐛 Report Issues • 💡 Request Features
</div>
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。