CSV Editor

CSV Editor

Comprehensive CSV processing MCP server with 40+ operations for data manipulation, analysis, and validation. Features auto-save, undo/redo, and handles GB+ files

Category
访问服务器

README

CSV Editor - AI-Powered CSV Processing via MCP

Python MCP License FastMCP Pandas

Transform how AI assistants work with CSV data. CSV Editor is a high-performance MCP server that gives Claude, ChatGPT, and other AI assistants powerful data manipulation capabilities through simple commands.

🎯 Why CSV Editor?

The Problem

AI assistants struggle with complex data operations - they can read files but lack tools for filtering, transforming, analyzing, and validating CSV data efficiently.

The Solution

CSV Editor bridges this gap by providing AI assistants with 40+ specialized tools for CSV operations, turning them into powerful data analysts that can:

  • Clean messy datasets in seconds
  • Perform complex statistical analysis
  • Validate data quality automatically
  • Transform data with natural language commands
  • Track all changes with undo/redo capabilities

Key Differentiators

Feature CSV Editor Traditional Tools
AI Integration Native MCP protocol Manual operations
Auto-Save Automatic with strategies Manual save required
History Tracking Full undo/redo with snapshots Limited or none
Session Management Multi-user isolated sessions Single user
Data Validation Built-in quality scoring Separate tools needed
Performance Handles GB+ files with chunking Memory limitations

⚡ Quick Demo

# Your AI assistant can now do this:
"Load the sales data and remove duplicates"
"Filter for Q4 2024 transactions over $10,000"  
"Calculate correlation between price and quantity"
"Fill missing values with the median"
"Export as Excel with the analysis"

# All with automatic history tracking and undo capability!

🚀 Quick Start (2 minutes)

Fastest Installation (Recommended)

# Install uv if needed (one-time setup)
curl -LsSf https://astral.sh/uv/install.sh | sh

# Clone and run
git clone https://github.com/santoshray02/csv-editor.git
cd csv-editor
uv sync
uv run csv-editor

Configure Your AI Assistant

<details> <summary><b>Claude Desktop</b> (Click to expand)</summary>

Add to ~/Library/Application Support/Claude/claude_desktop_config.json (macOS):

{
  "mcpServers": {
    "csv-editor": {
      "command": "uv",
      "args": ["tool", "run", "csv-editor"],
      "env": {
        "CSV_MAX_FILE_SIZE": "1073741824"
      }
    }
  }
}

</details>

<details> <summary><b>Other Clients</b> (Continue, Cline, Windsurf, Zed)</summary>

See MCP_CONFIG.md for detailed configuration.

</details>

💡 Real-World Use Cases

📊 Data Analyst Workflow

# Morning: Load yesterday's data
session = load_csv("daily_sales.csv")

# Clean: Remove duplicates and fix types
remove_duplicates(session_id)
change_column_type("date", "datetime")
fill_missing_values(strategy="median", columns=["revenue"])

# Analyze: Get insights
get_statistics(columns=["revenue", "quantity"])
detect_outliers(method="iqr", threshold=1.5)
get_correlation_matrix(min_correlation=0.5)

# Report: Export cleaned data
export_csv(format="excel", file_path="clean_sales.xlsx")

🏭 ETL Pipeline

# Extract from multiple sources
load_csv_from_url("https://api.example.com/data.csv")

# Transform with complex operations
filter_rows(conditions=[
    {"column": "status", "operator": "==", "value": "active"},
    {"column": "amount", "operator": ">", "value": 1000}
])
add_column(name="quarter", formula="Q{(month-1)//3 + 1}")
group_by_aggregate(group_by=["quarter"], aggregations={
    "amount": ["sum", "mean"],
    "customer_id": "count"
})

# Load to different formats
export_csv(format="parquet")  # For data warehouse
export_csv(format="json")     # For API

🔍 Data Quality Assurance

# Validate incoming data
validate_schema(schema={
    "customer_id": {"type": "integer", "required": True},
    "email": {"type": "string", "pattern": r"^[^@]+@[^@]+\.[^@]+$"},
    "age": {"type": "integer", "min": 0, "max": 120}
})

# Quality scoring
quality_report = check_data_quality()
# Returns: overall_score, missing_data%, duplicates, outliers

# Anomaly detection
anomalies = find_anomalies(methods=["statistical", "pattern"])

🎨 Core Features

Data Operations

  • Load & Export: CSV, JSON, Excel, Parquet, HTML, Markdown
  • Transform: Filter, sort, group, pivot, join
  • Clean: Remove duplicates, handle missing values, fix types
  • Calculate: Add computed columns, aggregations

Analysis Tools

  • Statistics: Descriptive stats, correlations, distributions
  • Outliers: IQR, Z-score, custom thresholds
  • Profiling: Complete data quality reports
  • Validation: Schema checking, quality scoring

Productivity Features

  • Auto-Save: Never lose work with configurable strategies
  • History: Full undo/redo with operation tracking
  • Sessions: Multi-user support with isolation
  • Performance: Stream processing for large files

📚 Available Tools

<details> <summary><b>Complete Tool List</b> (40+ tools)</summary>

I/O Operations

  • load_csv - Load from file
  • load_csv_from_url - Load from URL
  • load_csv_from_content - Load from string
  • export_csv - Export to various formats
  • get_session_info - Session details
  • list_sessions - Active sessions
  • close_session - Cleanup

Data Manipulation

  • filter_rows - Complex filtering
  • sort_data - Multi-column sort
  • select_columns - Column selection
  • rename_columns - Rename columns
  • add_column - Add computed columns
  • remove_columns - Remove columns
  • update_column - Update values
  • change_column_type - Type conversion
  • fill_missing_values - Handle nulls
  • remove_duplicates - Deduplicate

Analysis

  • get_statistics - Statistical summary
  • get_column_statistics - Column stats
  • get_correlation_matrix - Correlations
  • group_by_aggregate - Group operations
  • get_value_counts - Frequency counts
  • detect_outliers - Find outliers
  • profile_data - Data profiling

Validation

  • validate_schema - Schema validation
  • check_data_quality - Quality metrics
  • find_anomalies - Anomaly detection

Auto-Save & History

  • configure_auto_save - Setup auto-save
  • get_auto_save_status - Check status
  • undo / redo - Navigate history
  • get_history - View operations
  • restore_to_operation - Time travel

</details>

⚙️ Configuration

Environment Variables

Variable Default Description
CSV_MAX_FILE_SIZE 1GB Maximum file size
CSV_SESSION_TIMEOUT 3600s Session timeout
CSV_CHUNK_SIZE 10000 Processing chunk size
CSV_AUTO_SAVE true Enable auto-save

Auto-Save Strategies

CSV Editor automatically saves your work with configurable strategies:

  • Overwrite (default) - Update original file
  • Backup - Create timestamped backups
  • Versioned - Maintain version history
  • Custom - Save to specified location
# Configure auto-save
configure_auto_save(
    strategy="backup",
    backup_dir="/backups",
    max_backups=10
)

🛠️ Advanced Installation Options

<details> <summary><b>Alternative Installation Methods</b></summary>

Using pip

git clone https://github.com/santoshray02/csv-editor.git
cd csv-editor
pip install -e .

Using pipx (Global)

pipx install git+https://github.com/santoshray02/csv-editor.git

From GitHub (Recommended)

# Install latest version
pip install git+https://github.com/santoshray02/csv-editor.git

# Or using uv
uv pip install git+https://github.com/santoshray02/csv-editor.git

# Install specific version
pip install git+https://github.com/santoshray02/csv-editor.git@v1.0.1

</details>

🧪 Development

Running Tests

uv run test           # Run tests
uv run test-cov       # With coverage
uv run all-checks     # Format, lint, type-check, test

Project Structure

csv-editor/
├── src/csv_editor/   # Core implementation
│   ├── tools/        # MCP tool implementations
│   ├── models/       # Data models
│   └── server.py     # MCP server
├── tests/            # Test suite
├── examples/         # Usage examples
└── docs/            # Documentation

🤝 Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

Quick Contribution Guide

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes with tests
  4. Run uv run all-checks
  5. Submit a pull request

📈 Roadmap

  • [ ] SQL query interface
  • [ ] Real-time collaboration
  • [ ] Advanced visualizations
  • [ ] Machine learning integrations
  • [ ] Cloud storage support
  • [ ] Performance optimizations for 10GB+ files

💬 Support

📄 License

MIT License - see LICENSE file

🙏 Acknowledgments

Built with:

  • FastMCP - Fast Model Context Protocol
  • Pandas - Data manipulation
  • NumPy - Numerical computing

Ready to supercharge your AI's data capabilities? Get started in 2 minutes →

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选