CUA MCP Server
Enables autonomous desktop automation by delegating tasks to vision-based agents operating within cloud-based virtual machine sandboxes. It allows users to manage VMs, execute complex computer tasks, and receive text-based screen summaries across Linux, Windows, and macOS environments.
README
CUA MCP Server
An agentic Model Context Protocol (MCP) server for CUA Cloud - delegate desktop automation tasks to an autonomous vision-based agent. Images never leave the server; only text summaries are returned.
Production URL: https://cua-mcp-server.vercel.app/mcp
What is CUA?
CUA (Computer Use Agent) provides cloud-based virtual machine sandboxes that AI agents can control. This MCP server exposes CUA's capabilities through a clean task-delegation API:
- Create and manage VMs (Linux, Windows, macOS)
- Delegate tasks - "Open Chrome and navigate to google.com"
- Get text summaries - No images in your context window
- Query screen state - Vision-based descriptions without taking action
Architecture
Claude Code (Orchestrator)
│
│ run_task("Open Chrome and go to google.com")
▼
┌─────────────────────────────────────────────────────────────┐
│ CUA MCP Server (Agentic) │
│ ┌───────────────────────────────────────────────────────┐ │
│ │ Internal Agent Loop │ │
│ │ 1. screenshot() → CUA sandbox │ │
│ │ 2. screenshot → Claude API (computer_use tool) │ │
│ │ 3. Claude returns: click(x,y) / type("text") / done │ │
│ │ 4. Execute action on sandbox │ │
│ │ 5. Loop until complete │ │
│ └───────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
│
▼
{ success: true, summary: "Opened Chrome...", steps_taken: 5 }
(TEXT ONLY - no images)
Project Structure
api/mcp.ts # MCP protocol handler
lib/
├── agent/ # Modular agent architecture
│ ├── index.ts # Public exports
│ ├── types.ts # Type definitions
│ ├── config.ts # Model configurations
│ ├── validation.ts # Coordinate validation helpers
│ ├── execute.ts # Main agent loop
│ ├── describe.ts # Screen description
│ ├── progress.ts # Progress tracking
│ ├── utils.ts # Utilities (sleep, generateTaskId)
│ └── actions/ # Action handler registry (16 handlers)
├── cua-client.ts # CUA Cloud API client
└── tool-schemas.ts # MCP tool definitions
Available Tools (9 total)
Sandbox Management (5 tools)
| Tool | Description |
|---|---|
list_sandboxes |
List all CUA cloud sandboxes with their current status |
get_sandbox |
Get details of a specific sandbox including API URLs |
start_sandbox |
Start a stopped sandbox |
stop_sandbox |
Stop a running sandbox |
restart_sandbox |
Restart a sandbox |
Note: Create and delete sandboxes via the CUA Dashboard - the Cloud API doesn't expose these operations.
Agentic Tools (4 tools)
| Tool | Description |
|---|---|
describe_screen |
Get a text description of current screen state using vision AI. No actions taken. |
run_task |
Execute a computer task autonomously. Returns immediately with task_id for polling. |
get_task_progress |
Poll progress of running tasks. Returns current step, last action, and reasoning. |
get_task_history |
Retrieve results of a previously executed task by ID. |
Quick Start
1. Get a CUA API Key
- Go to cua.ai/signin
- Navigate to Dashboard > API Keys > New API Key
- Copy your API key (starts with
sk_cua-api01_...)
2. Configure Claude Code
Add to your ~/.claude.json:
{
"mcpServers": {
"cua": {
"command": "npx",
"args": ["-y", "mcp-remote", "https://cua-mcp-server.vercel.app/mcp"]
}
}
}
3. Use with Claude Code
You: "List my CUA sandboxes"
Claude: [Uses list_sandboxes tool]
You: "Start my-sandbox"
Claude: [Uses start_sandbox tool]
You: "Open Firefox and go to google.com on my-sandbox"
Claude: [Uses run_task with task="Open Firefox and navigate to google.com"]
→ Returns: { success: true, summary: "Opened Firefox, navigated to google.com", steps_taken: 4 }
You: "What's currently on the screen?"
Claude: [Uses describe_screen tool]
→ Returns: { description: "Firefox browser showing Google homepage with search box..." }
Usage Examples
Automate a Web Task
You: "On my-sandbox, open Chrome, go to github.com, and search for 'mcp server'"
Claude uses run_task:
- task: "Open Chrome browser, navigate to github.com, find the search box, type 'mcp server' and press Enter"
- Returns summary of what happened (no screenshots in your context)
Check Screen State
You: "What's on the screen right now?"
Claude uses describe_screen:
- focus: "ui" (or "text" or "full")
- Returns text description of UI elements, buttons, text content
Ask Specific Questions
You: "Is there a login button visible?"
Claude uses describe_screen:
- question: "Is there a login button visible?"
- Returns: "Yes, there is a blue 'Sign In' button in the top right corner..."
Self-Hosting
Prerequisites
- Vercel account with Pro plan (for 800s function timeout)
- Vercel Blob storage
- Anthropic API key
Deploy Your Own Instance
# Clone the repository
git clone https://github.com/anthropics/cua-mcp-server.git
cd cua-mcp-server
# Install dependencies
npm install
# Deploy to Vercel
vercel --prod
Environment Variables
| Variable | Description | Required |
|---|---|---|
CUA_API_KEY |
Your CUA Cloud API key | Yes |
ANTHROPIC_API_KEY |
Anthropic API key for vision processing | Yes |
BLOB_READ_WRITE_TOKEN |
Vercel Blob token (auto-added) | Yes |
CUA_API_BASE |
Custom API base URL (default: https://api.cua.ai) | No |
CUA_MODEL |
Model to use: claude-opus-4-5 (default) or claude-sonnet-4-5 |
No |
Setting Up Vercel Blob
- Go to your Vercel project dashboard
- Navigate to Storage → Create → Blob
- The
BLOB_READ_WRITE_TOKENwill be automatically added
Pass API Key Per-Request
If you don't want to store the CUA API key on the server:
{
"mcpServers": {
"cua": {
"command": "npx",
"args": [
"-y", "mcp-remote",
"https://your-deployment.vercel.app/mcp",
"--header", "X-CUA-API-Key: sk_cua-api01_your-key-here"
]
}
}
}
API Reference
MCP Endpoint
URL: POST /mcp
Content-Type: application/json
Example: Run Task
{
"jsonrpc": "2.0",
"method": "tools/call",
"id": 1,
"params": {
"name": "run_task",
"arguments": {
"sandbox_name": "s-linux-abc123",
"task": "Open Firefox and navigate to google.com",
"max_steps": 30,
"timeout_seconds": 120
}
}
}
Response:
{
"jsonrpc": "2.0",
"id": 1,
"result": {
"content": [{
"type": "text",
"text": "{\"task_id\":\"task_123...\",\"success\":true,\"summary\":\"Opened Firefox, navigated to google.com\",\"steps_taken\":4,\"duration_ms\":8500}"
}]
}
}
Example: Describe Screen
{
"jsonrpc": "2.0",
"method": "tools/call",
"id": 2,
"params": {
"name": "describe_screen",
"arguments": {
"sandbox_name": "s-linux-abc123",
"focus": "ui",
"question": "Is there a search box visible?"
}
}
}
Model Support
| Model | Env Variable | Tool Version | Features |
|---|---|---|---|
| Claude Opus 4.5 (default) | CUA_MODEL=claude-opus-4-5 |
computer_20251124 |
Zoom support, higher accuracy |
| Claude Sonnet 4.5 | CUA_MODEL=claude-sonnet-4-5 |
computer_20250124 |
Faster, lower cost |
Supported Computer Actions
The agent can perform the following actions autonomously:
UI Actions:
screenshot- Capture current screenleft_click,right_click,double_click,triple_click,middle_click- Mouse clicks at coordinatesmouse_move- Move cursor to coordinatesleft_click_drag- Click and drag from start to end coordinatesleft_mouse_down,left_mouse_up- Press/release mouse buttonscroll- Scroll up/down/left/rightwait- Pause executionzoom- View specific screen region at full resolution (Opus 4.5 only, defaults to center if no coordinate)
Keyboard:
type- Type textkey- Press key or key combination (e.g., "ctrl+c")hold_key- Hold a modifier key down (auto-releases after next action)
Constraints
| Constraint | Value |
|---|---|
| Function timeout | 800 seconds (Vercel Pro) |
| Max steps per task | 100 |
| Default steps | 100 |
| Default timeout | 750 seconds |
| Task history TTL | 24 hours |
| Display resolution | Dynamic (default 1024x768) |
Sandbox Types
| OS | Size | CPU | RAM | Use Case |
|---|---|---|---|---|
| Linux | small | 2 | 4GB | Development, testing |
| Linux | medium | 4 | 8GB | Build tasks, CI/CD |
| Linux | large | 8 | 16GB | Heavy workloads |
| Windows | small | 2 | 4GB | Basic Windows apps |
| Windows | medium | 4 | 8GB | Office, development |
| Windows | large | 8 | 16GB | Enterprise apps |
| macOS | small | 2 | 4GB | iOS development |
| macOS | medium | 4 | 8GB | Xcode builds |
| macOS | large | 8 | 16GB | Heavy compilation |
Regions
north-america- US East (lowest latency for US users)europe- EU Westasia- Asia Pacific
Troubleshooting
"CUA API key required"
Set CUA_API_KEY environment variable in Vercel or pass via X-CUA-API-Key header.
"ANTHROPIC_API_KEY not configured"
The server needs an Anthropic API key for vision processing. Add it to your Vercel environment variables.
Task times out
- Default timeout is 750 seconds
- Reduce task complexity or break into smaller steps
- Check if sandbox is responsive with
describe_screen
Task exceeds max steps
- Default is 100 steps (max 100)
- Break complex tasks into smaller subtasks
- Use more specific task descriptions
Resources
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。