
Cupcake MCP Server
Enables users to search and retrieve cupcake order records through natural language queries. Provides search functionality across order details and fetches complete order information by ID.
README
Cupcake MCP Server + Wasmer
This example shows how to run a Model Context Protocol (MCP) server for ChatGPT on Wasmer Edge.
ℹ️ MCP servers connected to ChatGPT should expose at least two tools—
search
andfetch
—so ChatGPT can both discover content and then retrieve specific items.
Demo
https://mcp-chatgpt-starter.wasmer.app/sse
Add it to ChatGPT as a connector (no auth), and then just ask ChatGPT to interact with it:
How many cupcakes Alice ordered?
How it Works
All logic lives in server.py
, but you can think of it in sections:
Data Section
The server loads cupcake records from a local records.json
file and builds a lookup dictionary:
RECORDS = json.loads(Path(__file__).with_name("records.json").read_text())
LOOKUP = {r["id"]: r for r in RECORDS}
Models Section
We define Pydantic models to structure responses:
SearchResult
andSearchResultPage
for search results.FetchResult
for full cupcake order details.
Tools Section
Two MCP tools are exposed via FastMCP
:
-
search(query: str)
Splits the query into tokens, performs keyword matching acrosstitle
,text
, andmetadata
, and returns a list of matching results. -
fetch(id: str)
Retrieves a single cupcake order by ID from the lookup dictionary and returns full details, including optionalurl
andmetadata
.
Entrypoint Section
At the bottom of server.py
, the app is created and run:
app = create_server()
if __name__ == "__main__":
app.run(transport="sse")
The server uses Server-Sent Events (SSE) to communicate with ChatGPT’s MCP integration.
Running Locally
Install dependencies:
pip install -r requirements.txt
Run the server:
python server.py
Your MCP server will now be running and ready for connections from an MCP client (like ChatGPT with MCP enabled).
Example Tools in Action
-
Search tool (
search("red velvet")
) Returns a list of cupcake orders that mention “red velvet.” -
Fetch tool (
fetch("42")
) Returns the full details of order42
, including text, metadata, and an optional URL.
Deploying to Wasmer Edge (Overview)
- Include both
server.py
andrecords.json
in your project. - Deploy to Wasmer Edge, ensuring the entrypoint is
server.py
. - Access it at:
https://<your-subdomain>.wasmer.app/sse
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。