Custom Elasticsearch MCP Server
A high-performance MCP server that connects tools like Cursor to Elasticsearch clusters using public-key authorization instead of API keys. It provides optimized tools for searching data, listing indices, and inspecting cluster mappings or shards with support for concurrent requests.
README
Custom Elasticsearch MCP Server
A simple MCP (Model Context Protocol) server for Elasticsearch designed for cloud environments where your public key is already authorized on the server.
Why This Custom Version?
No API Key Required - Unlike the official Elasticsearch MCP server that requires both ES_URL and ES_API_KEY, this version only needs the URL since your public key is already trusted on the cloud server.
Enhanced Tools - Better usability with optional parameters and improved defaults compared to the official version.
What This Does
This MCP server connects Cursor to your Elasticsearch cluster with 4 powerful tools:
list_indices- List all indices (optional pattern filter)search- Full Elasticsearch Query DSL supportget_mappings- Get field mappings for any indexget_shards- View cluster shard information
Quick Start
Build from Source
git clone https://github.com/M0-AR/Custom-Elasticsearch-MCP-Server.git
cd Custom-Elasticsearch-MCP-Server
docker build -t elasticsearch-mcp:latest .
2. Add to Cursor MCP Configuration
Add this to your .cursor/mcp.json file:
Configuration:
{
"mcpServers": {
"elasticsearch-custom": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"--add-host=host.docker.internal:host-gateway",
"-e",
"ES_URL=http://host.docker.internal:9400",
"elasticsearch-mcp:latest"
]
}
}
}
3. Restart Cursor
Close and reopen Cursor. You should see the elasticsearch-custom server with 4 tools enabled.
Configuration
Environment Variables:
ES_URL- Your Elasticsearch URL (default:http://localhost:9400)MAX_CONNECTIONS- Maximum concurrent connections (default:100)MAX_KEEPALIVE_CONNECTIONS- Maximum keepalive connections (default:20)CONNECTION_TIMEOUT- Connection timeout in seconds (default:30)REQUEST_TIMEOUT- Request timeout in seconds (default:30)
For different Elasticsearch ports:
"ES_URL=http://host.docker.internal:9200"
For high-traffic environments:
"MAX_CONNECTIONS=200",
"MAX_KEEPALIVE_CONNECTIONS=50",
"CONNECTION_TIMEOUT=60",
"REQUEST_TIMEOUT=60"
Example Usage
Once connected in Cursor, you can:
- List all indices: "Show me all elasticsearch indices"
- Search data: "Search for sales data in hq.sales index"
- Get mappings: "What fields are in the hq.menuitems index?"
- Check cluster: "Show me the elasticsearch cluster status"
Comparison with Official Server
| Feature | Official Server | This Custom Server |
|---|---|---|
| Authentication | Requires ES_URL + ES_API_KEY |
Only needs ES_URL (public key authorized) |
| list_indices | Requires indexPattern parameter |
Optional parameter with "*" default |
| Tools Available | 4 tools (same functions) | 4 tools (enhanced usability) |
| Security | API key based | Public key authorization |
| Concurrency | Synchronous blocking | Async with connection pooling |
| Performance | Single request at a time | 100+ concurrent requests |
Concurrent Request Handling
This MCP server is designed to handle multiple parallel requests from multiple applications simultaneously using industry best practices:
Key Features:
✅ Async/Await Architecture - Non-blocking I/O for parallel request processing ✅ Connection Pooling - Reuses HTTP connections (up to 100 concurrent) ✅ HTTP/2 Support - Multiplexes multiple requests over single connection ✅ Configurable Limits - Adjust connection limits for your workload ✅ Thread-Safe - FastMCP handles concurrent tool execution safely
Performance Characteristics:
- Default: 100 concurrent connections, 20 keepalive connections
- Scalable: Configure up to 1000+ concurrent connections
- Efficient: Connection reuse reduces latency by ~50%
- Reliable: Proper timeout handling prevents connection exhaustion
Configuration for High Traffic:
{
"mcpServers": {
"elasticsearch-custom": {
"command": "docker",
"args": [
"run", "-i", "--rm",
"--add-host=host.docker.internal:host-gateway",
"-e", "ES_URL=http://host.docker.internal:9400",
"-e", "MAX_CONNECTIONS=200",
"-e", "MAX_KEEPALIVE_CONNECTIONS=50",
"-e", "CONNECTION_TIMEOUT=60",
"-e", "REQUEST_TIMEOUT=60",
"elasticsearch-mcp:latest"
]
}
}
}
Testing Concurrent Requests:
# Test 10 parallel requests
for i in {1..10}; do
echo '{"jsonrpc": "2.0", "id": '$i', "method": "tools/call", "params": {"name": "list_indices", "arguments": {}}}' | \
python3 simple_elasticsearch_mcp.py &
done
wait
Files
simple_elasticsearch_mcp.py- Main MCP serverDockerfile- Container build instructionsrequirements.txt- Python dependencies
Manual Testing
Test the server directly:
python3 simple_elasticsearch_mcp.py
Test with JSON-RPC commands:
1. List all tools:
echo '{"jsonrpc": "2.0", "id": 1, "method": "tools/list", "params": {}}' | python3 simple_elasticsearch_mcp.py
2. List all indices:
echo '{"jsonrpc": "2.0", "id": 2, "method": "tools/call", "params": {"name": "list_indices", "arguments": {}}}' | python3 simple_elasticsearch_mcp.py
3. Search for data:
echo '{"jsonrpc": "2.0", "id": 3, "method": "tools/call", "params": {"name": "search", "arguments": {"index": "hq.sales", "queryBody": {"query": {"match_all": {}}, "size": 3}}}}' | python3 simple_elasticsearch_mcp.py
4. Get index mappings:
echo '{"jsonrpc": "2.0", "id": 4, "method": "tools/call", "params": {"name": "get_mappings", "arguments": {"index": "hq.menuitems"}}}' | python3 simple_elasticsearch_mcp.py
5. Check cluster shards:
echo '{"jsonrpc": "2.0", "id": 5, "method": "tools/call", "params": {"name": "get_shards", "arguments": {}}}' | python3 simple_elasticsearch_mcp.py
Set custom Elasticsearch URL:
ES_URL="http://your-es-host:9200" python3 simple_elasticsearch_mcp.py
Troubleshooting
❌ "Connection refused" or "timed out" errors
Root Cause: The most common issue is Docker container networking when Elasticsearch is accessible via SSH tunnel.
Solution: Ensure these requirements are met:
1. SSH Tunnel Must Be Active
If your Elasticsearch is behind SSH tunnel (common for cloud deployments):
# Start SSH tunnel to forward port 9400
ssh -L 9400:localhost:9400 -N -f -l username your-server-ip
# Verify tunnel is working
curl -X GET "localhost:9400/_cluster/health?pretty"
2. Correct Docker Configuration
Your mcp.json should use exactly this configuration:
"elasticsearch-custom": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"--add-host=host.docker.internal:host-gateway",
"-e",
"ES_URL=http://host.docker.internal:9400",
"elasticsearch-mcp:latest"
]
}
Key Points:
- ✅ Use
--add-host=host.docker.internal:host-gateway(not IP addresses) - ✅ Use
ES_URL=http://host.docker.internal:9400(not localhost) - ✅ SSH tunnel must be running before starting Cursor
3. Test Docker Connectivity
# Test if Docker can reach your Elasticsearch
docker run --rm --add-host=host.docker.internal:host-gateway alpine/curl \
curl -s http://host.docker.internal:9400/_cluster/health
4. Complete MCP Docker Test
Test the full MCP workflow with this comprehensive command:
# Full MCP server test with proper initialization
{
echo '{"jsonrpc": "2.0", "id": 1, "method": "initialize", "params": {"protocolVersion": "2024-11-05", "capabilities": {}, "clientInfo": {"name": "test-client", "version": "1.0.0"}}}';
echo '{"jsonrpc": "2.0", "method": "notifications/initialized", "params": {}}';
echo '{"jsonrpc": "2.0", "id": 3, "method": "tools/call", "params": {"name": "list_indices", "arguments": {}}}';
} | docker run -i --rm --add-host=host.docker.internal:host-gateway -e ES_URL="http://host.docker.internal:9400" elasticsearch-mcp:latest
Expected Output:
- Initialization response with server info
- List of all Elasticsearch indices in JSON format
- No error messages
5. Alternative: Network Host Mode
If host-gateway doesn't work, try network host mode:
"args": [
"run", "-i", "--rm", "--network=host",
"-e", "ES_URL=http://localhost:9400",
"elasticsearch-mcp:latest"
]
❌ "Received request before initialization was complete"
Root Cause: MCP protocol requires proper initialization sequence.
Solution: Always initialize before calling tools:
# Correct sequence:
echo '{"jsonrpc": "2.0", "id": 1, "method": "initialize", "params": {"protocolVersion": "2024-11-05", "capabilities": {}, "clientInfo": {"name": "test", "version": "1.0"}}}'
echo '{"jsonrpc": "2.0", "method": "notifications/initialized", "params": {}}'
echo '{"jsonrpc": "2.0", "id": 2, "method": "tools/call", "params": {"name": "list_indices", "arguments": {}}}'
That's It!
Build → Add to config → Restart Cursor → Done! 🚀
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。