Cyber Sentinel MCP Server
A threat intelligence aggregation server that provides unified access to multiple security sources for analyzing indicators (IPs, domains, hashes, URLs) with confidence scoring.
README
🛡️ Cyber Sentinel MCP Server
A comprehensive threat intelligence aggregation MCP (Model Context Protocol) server that provides unified access to multiple threat intelligence sources for security analysis.
🎯 Overview
Cyber Sentinel eliminates the tedious manual process of querying multiple threat intelligence sources by providing a single, unified interface. Security analysts can now analyze indicators (IPs, domains, hashes, URLs) across multiple sources with a single command, getting aggregated results with confidence scoring.
✨ Features
🔍 Threat Intelligence
- Multi-Source Intelligence: Aggregates data from VirusTotal v3, AbuseIPDB, URLhaus, Shodan, ThreatFox, and MalwareBazaar
- Smart Indicator Detection: Automatically detects IP addresses, domains, file hashes, and URLs
- Intelligent Aggregation: Combines results from multiple sources with confidence scoring
- Async Performance: High-performance concurrent processing
- Smart Caching: Reduces API calls and improves response times (1-hour TTL)
- Rate Limiting: Respects API limits across all sources (60 req/min default)
- Error Recovery: Graceful handling of API failures and timeouts
🛡️ Code Security Analysis
- Multi-Language Support: Analyzes Python, JavaScript, Java, C#, PHP, Go, Rust, C++, and SQL code
- Vulnerability Detection: Identifies hardcoded secrets, SQL injection, XSS, path traversal, and more
- Network Indicator Analysis: Extracts and analyzes IPs, domains, and URLs found in code
- Secure Alternatives: Provides secure coding recommendations and alternatives
- Risk Scoring: Calculates comprehensive security risk scores
📦 Dependency Security
- Multi-Platform Support: Scans NPM, Python, Maven, Cargo, Go, and Composer dependencies
- Vulnerability Detection: Identifies known malicious packages and outdated dependencies
- Security Recommendations: Provides actionable security improvement suggestions
- Risk Assessment: Comprehensive dependency risk scoring
🐳 Infrastructure Security
- Docker Security: Analyzes Dockerfile configurations for security best practices
- Kubernetes Security: Scans K8s manifests for security misconfigurations
- CI/CD Integration: Provides security analysis for DevOps pipelines
📊 Reporting & Visualization
- Rich Reports: Generates comprehensive security analysis reports
- Visual Dashboards: Creates security metrics and trend visualizations
- Export Options: Supports multiple output formats (JSON, HTML, PDF)
- MCP Protocol: Full compatibility with MCP-enabled AI assistants
🚀 Quick Start
Prerequisites
- Python 3.8 or higher
- MCP-compatible client (Claude Desktop, Cursor, etc.)
Installation
- Clone the repository:
git clone https://github.com/jx888-max/cyber-sentinel-mcp.git
cd cyber-sentinel-mcp
- Install dependencies:
pip install -e .
- 配置API密钥:
# 运行设置向导
python -m cyber_sentinel.setup_wizard
# 或者直接设置环境变量
export VIRUSTOTAL_API_KEY=your_virustotal_api_key_here
export ABUSEIPDB_API_KEY=your_abuseipdb_api_key_here
- Verify installation:
python -c "from cyber_sentinel.server import app; print('✅ Installation successful!')"
API Key Setup
VirusTotal (Highly Recommended)
- Free Tier: 1,000 requests/day
- Capabilities: IP, domain, hash, and URL analysis
- Visit VirusTotal
- Create a free account
- Get your API key from the API section
- Add to
.env:VIRUSTOTAL_API_KEY=your_key_here
AbuseIPDB (Highly Recommended)
- Free Tier: 1,000 requests/day
- Capabilities: IP address reputation and abuse reporting
- Visit AbuseIPDB
- Create a free account
- Get your API key from the account settings
- Add to
.env:ABUSEIPDB_API_KEY=your_key_here
Shodan (Optional)
- Free Tier: 100 results/month
- Capabilities: Internet-connected device intelligence
- Visit Shodan
- Create an account and get your API key
- Add to
.env:SHODAN_API_KEY=your_key_here
URLhaus (No API Key Required)
- Free: Works without API key for basic usage
- Capabilities: Malware URL and payload tracking
🔧 MCP Client Configuration
Claude Desktop
Add to your claude_desktop_config.json:
{
"mcpServers": {
"cyber-sentinel": {
"command": "python",
"args": ["-m", "cyber_sentinel.server"],
"cwd": "/path/to/cyber-sentinel",
"env": {
"VIRUSTOTAL_API_KEY": "your_virustotal_key",
"ABUSEIPDB_API_KEY": "your_abuseipdb_key",
"SHODAN_API_KEY": "your_shodan_key"
}
}
}
}
Cursor/VS Code
Add to your MCP configuration:
{
"mcp.servers": {
"cyber-sentinel": {
"command": ["python", "-m", "cyber_sentinel.server"],
"cwd": "/path/to/cyber-sentinel",
"env": {
"VIRUSTOTAL_API_KEY": "your_virustotal_key",
"ABUSEIPDB_API_KEY": "your_abuseipdb_key"
}
}
}
}
📖 Usage Examples
Once configured in your MCP client, you can use natural language to analyze security indicators:
🔍 Threat Intelligence Analysis
Analyze the IP address 8.8.8.8 for any malicious activity
Check if 1.1.1.1 is safe to use
Is google.com safe?
Check the security status of example.com
Analyze this MD5 hash: d41d8cd98f00b204e9800998ecf8427e
Is this URL safe: https://example.com/suspicious-path
Show me the status of all threat intelligence sources
🛡️ Code Security Analysis
Analyze this Python code for security vulnerabilities:
[paste your code here]
Check this JavaScript function for XSS vulnerabilities:
[paste your code here]
Scan this SQL query for injection risks:
[paste your code here]
📦 Dependency Security Scanning
Scan these project dependencies for vulnerabilities:
package.json: [paste content]
requirements.txt: [paste content]
Check my Python project for outdated packages:
[provide requirements.txt content]
🐳 Infrastructure Security
Analyze this Dockerfile for security issues:
[paste Dockerfile content]
Check this Kubernetes deployment for security misconfigurations:
[paste K8s YAML content]
📊 Security Reporting
Generate a comprehensive security report for my project
Create a security dashboard with current threat landscape
Export security findings to HTML report
🛠️ Available MCP Tools
🔍 Threat Intelligence Tools
analyze_indicator
Analyzes security indicators across multiple threat intelligence sources.
Supported Indicators:
- IP Addresses: IPv4 addresses (e.g.,
8.8.8.8) - Domain Names: Any domain (e.g.,
google.com) - File Hashes: MD5, SHA1, SHA256 hashes
- URLs: Complete URLs (e.g.,
https://example.com)
Returns:
- Overall reputation (clean/malicious/unknown)
- Confidence score (0-100%)
- Results from individual threat intelligence sources
- Geographic and ISP information (for IPs)
- Detailed analysis data
check_api_status
Checks the configuration and status of all threat intelligence sources.
Returns:
- API key validation status
- Available capabilities per source
- Rate limiting configuration
- Overall system health
🛡️ Security Analysis Tools
analyze_code_security
Performs comprehensive security analysis of source code.
Parameters:
code_content: Source code to analyzelanguage: Programming language (auto-detected if not specified)locale: Output language (zh/en)
Returns:
- Security vulnerabilities and their severity
- Hardcoded secrets and credentials
- Network indicators found in code
- Secure coding recommendations
- Risk score and remediation guidance
scan_project_dependencies
Scans project dependencies for security vulnerabilities.
Parameters:
project_files: Dictionary of dependency files (package.json, requirements.txt, etc.)
Returns:
- Known malicious packages
- Outdated dependencies with vulnerabilities
- Security recommendations
- Risk assessment and scoring
analyze_docker_security
Analyzes Docker configurations for security best practices.
Parameters:
dockerfile_content: Dockerfile content to analyze
Returns:
- Security misconfigurations
- Best practice violations
- Hardening recommendations
- Risk assessment
scan_kubernetes_config
Scans Kubernetes manifests for security issues.
Parameters:
k8s_manifests: Dictionary of Kubernetes YAML files
Returns:
- Security policy violations
- Privilege escalation risks
- Network security issues
- Compliance recommendations
generate_security_report
Generates comprehensive security reports with visualizations.
Parameters:
analysis_results: Combined results from security analysesreport_format: Output format (json/html/markdown)
Returns:
- Formatted security report
- Executive summary
- Detailed findings
- Remediation roadmap
📊 Example Response
{
"indicator": "8.8.8.8",
"type": "ip",
"overall_reputation": "clean",
"confidence": 100.0,
"sources_checked": 4,
"sources_responded": 3,
"malicious_sources": 0,
"clean_sources": 3,
"countries": ["US"],
"isps": ["Google LLC"],
"detailed_results": [
{
"source": "VirusTotal",
"reputation": "clean",
"malicious_count": 0,
"total_engines": 89
}
],
"errors": [],
"timestamp": "2024-01-15T10:30:00Z"
}
⚡ Performance & Reliability
🚀 High Performance
- Async Architecture: High-performance concurrent processing across all analysis tools
- Smart Caching: 1-hour TTL reduces API calls and improves response times
- Parallel Processing: Simultaneous analysis across multiple threat intelligence sources
- Optimized Algorithms: Efficient pattern matching and vulnerability detection
🛡️ Reliability & Resilience
- Rate Limiting: Configurable limits (default: 60 requests/minute) with intelligent throttling
- Timeout Handling: 30-second request timeouts prevent hanging operations
- Error Recovery: Graceful handling of API failures and network issues
- Fallback Mechanisms: Continues analysis even when some sources are unavailable
- Retry Logic: Automatic retry with exponential backoff for transient failures
🔒 Security & Privacy
🛡️ Data Protection
- Zero Data Storage: No indicators, code, or analysis results are permanently stored
- Memory-Only Processing: All analysis happens in memory with automatic cleanup
- API Key Security: Keys managed securely through environment variables and encrypted storage
- Source Isolation: Each threat intelligence source operates independently with isolated credentials
🔐 Privacy Safeguards
- Local Processing: Code analysis happens locally without external transmission
- Error Isolation: Sensitive information is never exposed in error messages or logs
- Audit Trail: Optional security event logging for compliance requirements
- Data Minimization: Only necessary data is processed and immediately discarded
🧪 Testing
Run the test suite to verify functionality:
# Run unit tests
python -m pytest tests/ -v
# Test with your API keys
python -c "
from cyber_sentinel.server import check_api_status
import asyncio
print(asyncio.run(check_api_status()))
"
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🤝 Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Make your changes and add tests
- Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
🆘 Support
- Issues: GitHub Issues
- Documentation: See llms-install.md for detailed setup
- MCP Protocol: Model Context Protocol Documentation
🙏 Acknowledgments
- Anthropic for the MCP protocol and Claude AI
- VirusTotal for comprehensive malware analysis
- AbuseIPDB for IP reputation intelligence
- URLhaus for malware URL tracking
- Shodan for internet device intelligence
- ThreatFox for IOC sharing platform
- MalwareBazaar for malware sample intelligence
- OWASP for security best practices and vulnerability patterns
- Open source security community for continuous threat intelligence sharing
🛡️ Threat Intelligence, Simplified.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。