CyberChef MCP Server

CyberChef MCP Server

Enables AI agents to discover, execute, and validate CyberChef operations for data encoding, decoding, encryption, and transformation tasks. Provides structured access to CyberChef's extensive catalog of data manipulation tools through natural language interactions.

Category
访问服务器

README

Cyberchef MCP Server

Pydantic-powered MCP server exposing most CyberChef operations as structured tools.

  • Sources for operation metadata: see extract_operations.js
  • Operations catalog JSON: utils/js/operations.json

What is this?

This project wraps the CyberChef-server HTTP API in an MCP (Model Context Protocol) server so AI agents and MCP-aware apps can:

  • Discover CyberChef operations with fuzzy search
  • Inspect the exact argument schema for any operation
  • Execute single- or multi-step CyberChef recipes against text or binary data
  • Validate and repair recipes programmatically

Prerequisites

You need a running CyberChef-server (the upstream API that performs the actual transforms):

git clone https://github.com/gchq/CyberChef-server
cd CyberChef-server
docker build -t cyberchef-server .
docker run -d --name=cyberchef-server -p 3000:3000 cyberchef-server

By default this MCP server talks to http://localhost:3000/; you can override with --api-url.

Install (local)

# From the project root
python -m venv .venv && source .venv/bin/activate  # or use your preferred env manager
pip install -r requirements.txt

Run (local)

python mcp_cyberchef_service.py \
  --api-url http://localhost:3000/ \
  --host 127.0.0.1 \
  --port 3002

This will start the MCP server using the streamable-http transport on the host/port you provide.

CLI flags:

  • --api-url: Base URL of the upstream CyberChef-server (default http://localhost:3000/)
  • --host: Interface to bind for the MCP server (default 127.0.0.1)
  • --port: Port for the MCP server (default 3002)

Run with Docker

Builds a lightweight image and starts the MCP server on port 3002.

From this directory:

docker build -f Dockerfile -t cyberchef-mcp .

Then run it (pointing to your CyberChef-server):

docker run -d -p 3002:3002 \
  cyberchef-mcp \
  --api-url http://host.docker.internal:3000/ \
  --host 0.0.0.0 \
  --port 3002

MCP Tools exposed

These are the primary tools exported by the MCP server. Argument and return schemas are enforced with Pydantic models.

  • search_operations(query: string, limit?: number=10, include_args?: boolean=false) → { total, items[], truncated? } Find relevant CyberChef operations by name/description with fuzzy matching. Optionally include argument lists.
  • get_operation_args(op: string, compact?: boolean=true) → { ok, op, args[], error? } Return the exact argument schema for one operation; with compact=true, enum values are slugified.
  • bake_recipe(input_data: string, recipe: [{op:string, args?:object}]) → { ok, output?, type?, errors[], warnings[] } Execute a single recipe for one input string.
  • batch_bake_recipe(batch_input_data: string[], recipe: [...]) → { results: BakeRecipeResponse[] } Execute the same recipe for many inputs.
  • validate_recipe(recipe: [{op, args?}]) → { ok, errors[], suggestions[], normalized? } Validate step names/args and suggest fixes or missing args.
  • help_bake_recipe() → Cheat sheet with schema notes and examples for composing recipes.
  • cyberchef_probe(raw_input: string) → ProbeOut Quick heuristics to guess encodings and propose a minimal recipe.
  • perform_magic_operation(input_data: string, depth?: int=3, intensive_mode?: bool=false, extensive_language_support?: bool=false, crib_str?: string="") → dict Invoke CyberChef Magic; may be slow/approximate.

Tip: Operation names and argument keys are case-sensitive and must match CyberChef exactly. Use search_operations/get_operation_args first.

Example (agent integration)

See example/test-cyberchef.py for a full integration with Microsoft Autogen MCP workbench. It spins up this server and drives it strictly via tools. A minimal flow:

  1. search_operations("base64") to shortlist "From Base64".
  2. bake_recipe with:
    • input_data: "SGVsbG8gV29ybGQh"
    • recipe: [{"op":"From Base64","args":{}}]

Cross platform builds

Only once: docker buildx create --use --name xbuilder

Further updates:

docker buildx use xbuilder
docker buildx build --platform linux/amd64 -f mcp_servers/mcp_cyberchef/Dockerfile -t cyberchef-mcp-amd64 --load .
docker buildx use default

Troubleshooting

  • Connection errors when baking recipes: ensure CyberChef-server is running and --api-url points to it.
  • Unknown op / bad args: call get_operation_args(op) and confirm exact key names and allowed enum values.
  • Large search results: lower limit or narrow your query; the server truncates responses to stay under size caps.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选