DALL-E 3 MCP Server
A Model Context Protocol server that provides OpenAI's DALL-E 3 image generation capabilities, allowing LLMs to generate high-quality images through a standardized interface.
README
DALL-E 3 MCP Server
A Model Context Protocol (MCP) server that provides DALL-E 3 image generation capabilities. This server allows LLMs to generate high-quality images using OpenAI's DALL-E 3 model through the standardized MCP interface.
Features
- 🎨 High-Quality Image Generation: Uses DALL-E 3 for state-of-the-art image creation
- 🔧 Flexible Configuration: Support for different sizes, quality levels, and styles
- 📁 Automatic File Management: Handles directory creation and file saving
- 🛡️ Robust Error Handling: Comprehensive error handling with detailed feedback
- 📊 Detailed Logging: Comprehensive logging for debugging and monitoring
- 🚀 TypeScript: Fully typed for better development experience
- 🧪 Well Tested: Comprehensive test suite with high coverage
Installation
Using NPX (Recommended)
npx imagegen-mcp-d3
Using NPM
npm install -g imagegen-mcp-d3
From Source
git clone https://github.com/chrisurf/imagegen-mcp-d3.git
cd imagegen-mcp-d3
npm install
npm run build
npm start
Prerequisites
- Node.js: Version 18.0.0 or higher
- OpenAI API Key: You need a valid OpenAI API key with DALL-E 3 access
Configuration
Environment Variables
Set your OpenAI API key as an environment variable:
export OPENAI_API_KEY="your-openai-api-key-here"
Or create a .env file in your project root:
OPENAI_API_KEY=your-openai-api-key-here
Usage
With Claude Desktop
Add this server to your Claude Desktop configuration:
{
"mcpServers": {
"imagegen-mcp-d3": {
"command": "npx",
"args": ["imagegen-mcp-d3"],
"env": {
"OPENAI_API_KEY": "your-openai-api-key-here"
}
}
}
}
With Other MCP Clients
The server implements the standard MCP protocol and can be used with any compatible client.
Available Tools
generate_image
Generates an image using DALL-E 3 and saves it to the specified location.
Parameters:
prompt(required): Text description of the image to generateoutput_path(required): Full file path where the image should be savedsize(optional): Image dimensions -"1024x1024","1024x1792", or"1792x1024"(default:"1024x1024")quality(optional): Image quality -"standard"or"hd"(default:"hd")style(optional): Image style -"vivid"or"natural"(default:"vivid")
Example:
{
"name": "generate_image",
"arguments": {
"prompt": "A serene sunset over a mountain lake with pine trees",
"output_path": "/Users/username/Pictures/sunset_lake.png",
"size": "1024x1792",
"quality": "hd",
"style": "natural"
}
}
Response:
The tool returns detailed information about the generated image, including:
- Original and revised prompts
- Image URL
- File save location
- Image specifications
- File size
API Reference
Image Sizes
- Square:
1024x1024- Perfect for social media and general use - Portrait:
1024x1792- Great for mobile wallpapers and vertical displays - Landscape:
1792x1024- Ideal for desktop wallpapers and horizontal displays
Quality Options
- Standard: Faster generation, good quality
- HD: Higher quality with more detail (recommended)
Style Options
- Vivid: More dramatic and artistic interpretations
- Natural: More realistic and natural-looking results
Development
Setup
git clone https://github.com/chrisurf/imagegen-mcp-d3.git
cd imagegen-mcp-d3
npm install
Available Scripts
npm run dev # Run in development mode with hot reload
npm run build # Build for production
npm run start # Start the built server
npm run test # Run tests
npm run test:watch # Run tests in watch mode
npm run test:coverage # Run tests with coverage report
npm run lint # Run ESLint
npm run lint:fix # Fix ESLint issues
npm run format # Format code with Prettier
npm run typecheck # Run TypeScript type checking
Project Structure
src/
├── index.ts # Main server implementation
├── types.ts # TypeScript type definitions
└── __tests__/ # Test files
└── index.test.ts # Main test suite
Running Tests
# Run all tests
npm test
# Run tests with coverage
npm run test:coverage
# Run tests in watch mode during development
npm run test:watch
Error Handling
The server provides comprehensive error handling for common scenarios:
- Missing API Key: Clear error message when
OPENAI_API_KEYis not set - Invalid Parameters: Validation errors for required and optional parameters
- API Errors: Detailed error messages from the OpenAI API
- File System Errors: Handling of directory creation and file writing issues
- Network Errors: Graceful handling of network connectivity issues
Logging
The server provides detailed logging for monitoring and debugging:
- Request initiation and parameters
- API communication status
- Image generation progress
- File saving confirmation
- Error details and stack traces
Contributing
We welcome contributions! Please see our Contributing Guidelines for details.
Development Workflow
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Make your changes
- Add tests for new functionality
- Ensure all tests pass:
npm test - Commit your changes:
git commit -m 'Add amazing feature' - Push to the branch:
git push origin feature/amazing-feature - Open a Pull Request
CI/CD
This project uses GitHub Actions for continuous integration and deployment:
- Testing: Automated testing on multiple Node.js versions (18, 20, 22)
- Code Quality: ESLint, Prettier, and TypeScript checks
- Security: Dependency vulnerability scanning
- Publishing: Automatic NPM publishing on release
- Coverage: Local code coverage reporting
License
This project is licensed under the MIT License - see the LICENSE file for details.
Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Email: Open an issue for support
Changelog
See CHANGELOG.md for a detailed history of changes.
Related Projects
- Model Context Protocol - The official MCP specification
- MCP TypeScript SDK - TypeScript SDK for MCP
- Claude Desktop - AI assistant that supports MCP servers
Acknowledgments
- OpenAI for the DALL-E 3 API
- Anthropic for the Model Context Protocol specification
- The MCP community for tools and documentation High-performance MCP for generating images using DALL·E 3 – optimized for fast, scalable, and customizable inference workflows.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。