DataBeak

DataBeak

Provides 40+ specialized tools for AI assistants to load, transform, analyze, and validate CSV data from URLs and string content through the Model Context Protocol.

Category
访问服务器

README

DataBeak

Tests codecov Python 3.12+ License Code style: ruff

AI-Powered CSV Processing via Model Context Protocol

Transform how AI assistants work with CSV data. DataBeak provides 40+ specialized tools for data manipulation, analysis, and validation through the Model Context Protocol (MCP).

Features

  • 🔄 Complete Data Operations - Load, transform, and analyze CSV data from URLs and string content
  • 📊 Advanced Analytics - Statistics, correlations, outlier detection, data profiling
  • Data Validation - Schema validation, quality scoring, anomaly detection
  • 🎯 Stateless Design - Clean MCP architecture with external context management
  • High Performance - Async I/O, streaming downloads, chunked processing
  • 🔒 Session Management - Multi-user support with isolated sessions
  • 🛡️ Web-Safe - No file system access; designed for secure web hosting
  • 🌟 Code Quality - Zero ruff violations, 100% mypy compliance, perfect MCP documentation standards, comprehensive test coverage

Getting Started

The fastest way to use DataBeak is with uvx (no installation required):

For Claude Desktop

Add this to your MCP Settings file:

{
  "mcpServers": {
    "databeak": {
      "command": "uvx",
      "args": [
        "--from",
        "git+https://github.com/jonpspri/databeak.git",
        "databeak"
      ]
    }
  }
}

For Other AI Clients

DataBeak works with Continue, Cline, Windsurf, and Zed. See the installation guide for specific configuration examples.

HTTP Mode (Advanced)

For HTTP-based AI clients or custom deployments:

# Run in HTTP mode
uv run databeak --transport http --host 0.0.0.0 --port 8000

# Access server at http://localhost:8000/mcp
# Health check at http://localhost:8000/health

Quick Test

Once configured, ask your AI assistant:

"Load this CSV data: name,price\nWidget,10.99\nGadget,25.50"
"Load CSV from URL: https://example.com/data.csv"
"Remove duplicate rows and show me the statistics"
"Find outliers in the price column"

Documentation

📚 Complete Documentation

Environment Variables

Configure DataBeak behavior with environment variables (all use DATABEAK_ prefix):

Variable Default Description
DATABEAK_SESSION_TIMEOUT 3600 Session timeout (seconds)
DATABEAK_MAX_DOWNLOAD_SIZE_MB 100 Maximum URL download size (MB)
DATABEAK_MAX_MEMORY_USAGE_MB 1000 Max DataFrame memory (MB)
DATABEAK_MAX_ROWS 1,000,000 Max DataFrame rows
DATABEAK_URL_TIMEOUT_SECONDS 30 URL download timeout
DATABEAK_HEALTH_MEMORY_THRESHOLD_MB 2048 Health monitoring memory threshold

See settings.py for complete configuration options.

Known Limitations

DataBeak is designed for interactive CSV processing with AI assistants. Be aware of these constraints:

  • Data Loading: URLs and string content only (no local file system access for web hosting security)
  • Download Size: Maximum 100MB per URL download (configurable via DATABEAK_MAX_DOWNLOAD_SIZE_MB)
  • DataFrame Size: Maximum 1GB memory and 1M rows per DataFrame (configurable)
  • Session Management: Maximum 100 concurrent sessions, 1-hour timeout (configurable)
  • Memory: Large datasets may require significant memory; monitor with health_check tool
  • CSV Dialects: Assumes standard CSV format; complex dialects may require pre-processing
  • Concurrency: Async I/O for concurrent URL downloads; parallel sessions supported
  • Data Types: Automatic type inference; complex types may need explicit conversion
  • URL Loading: HTTPS only; blocks private networks (127.0.0.1, 192.168.x.x, 10.x.x.x) for security

For production deployments with larger datasets, adjust environment variables and monitor resource usage with health_check and get_server_info tools.

Contributing

We welcome contributions! Please:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes with tests
  4. Run quality checks: uv run -m pytest
  5. Submit a pull request

Note: All changes must go through pull requests. Direct commits to main are blocked by pre-commit hooks.

Development

# Setup development environment
git clone https://github.com/jonpspri/databeak.git
cd databeak
uv sync

# Run the server locally
uv run databeak

# Run tests
uv run -m pytest tests/unit/          # Unit tests (primary)
uv run -m pytest                      # All tests

# Run quality checks
uv run ruff check
uv run mypy src/databeak/

Testing Structure

DataBeak implements comprehensive unit and integration testing:

  • Unit Tests (tests/unit/) - 940+ fast, isolated module tests
  • Integration Tests (tests/integration/) - 43 FastMCP Client-based protocol tests across 7 test files
  • E2E Tests (tests/e2e/) - Planned: Complete workflow validation

Test Execution:

uv run pytest -n auto tests/unit/          # Run unit tests (940+ tests)
uv run pytest -n auto tests/integration/   # Run integration tests (43 tests)
uv run pytest -n auto --cov=src/databeak   # Run with coverage analysis

See Testing Guide for comprehensive testing details.

License

Apache 2.0 - see LICENSE file.

Support

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选