Databento MCP
A Model Context Protocol server that provides access to Databento's historical and real-time market data, including trades, OHLCV bars, and order book depth. It enables AI assistants to perform financial data analysis, manage batch jobs, and convert market data between DBN and Parquet formats.
README
<p align="center"> <img src="https://raw.githubusercontent.com/deepentropy/databento-mcp/main/logo.svg" alt="Databento™ MCP Logo" width="100" height="100"> </p>
<h1 align="center">Databento™ MCP</h1>
<p align="center"> <strong>Model Context Protocol server for Databento™ market data</strong> </p>
<p align="center"> <a href="https://pypi.org/project/databento-mcp/"><img src="https://img.shields.io/pypi/v/databento-mcp" alt="PyPI"></a> <a href="https://pypi.org/project/databento-mcp/"><img src="https://img.shields.io/pypi/pyversions/databento-mcp" alt="Python"></a> <a href="https://github.com/deepentropy/databento-mcp/blob/main/LICENSE"><img src="https://img.shields.io/github/license/deepentropy/databento-mcp" alt="License"></a> </p>
Installation
pip install databento-mcp
Quick Start
- Get your API key from Databento
- Configure your MCP client (see setup guides below)
- Start querying market data through your AI assistant
Setup Guides
Claude Desktop
Add to your configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"databento": {
"command": "databento-mcp",
"env": {
"DATABENTO_API_KEY": "your-api-key"
}
}
}
}
GitHub Copilot CLI
Add the server to your Copilot CLI configuration:
gh copilot config set mcp-servers '{
"databento": {
"command": "databento-mcp",
"env": {
"DATABENTO_API_KEY": "your-api-key"
}
}
}'
Or add to your ~/.config/gh-copilot/config.yml:
mcp-servers:
databento:
command: databento-mcp
env:
DATABENTO_API_KEY: your-api-key
See GitHub Copilot CLI MCP documentation for more details.
ChatGPT (via Developer Mode)
ChatGPT supports MCP servers through Developer Mode.
- Enable Developer Mode in ChatGPT settings
- Add an MCP server with the following configuration:
{
"name": "databento",
"command": "databento-mcp",
"env": {
"DATABENTO_API_KEY": "your-api-key"
}
}
See OpenAI Developer Mode documentation for detailed setup instructions.
Features
Historical Data
- Retrieve trades, OHLCV bars, market depth, and more
- Support for all Databento schemas (trades, mbp-1, mbp-10, ohlcv-*, etc.)
- Cost estimation before query execution
- Smart data summaries with statistics
Live Data
- Real-time market data streaming
- Configurable stream duration
- Multiple schema support
File Operations
- Read/write DBN format files
- Export to Apache Parquet
- Convert between formats
Batch Processing
- Submit large-scale batch jobs
- Monitor job status
- Download completed files
Reference Data
- Symbol metadata and definitions
- Symbology resolution
- Dataset discovery
- Publisher information
Quality & Performance
- Smart caching with configurable TTL
- Data quality analysis
- Connection pooling
- Comprehensive metrics
Available Tools
| Tool | Description |
|---|---|
health_check |
Check API connectivity and server status |
get_historical_data |
Retrieve historical market data |
get_live_data |
Stream real-time market data |
get_cost |
Estimate query cost before execution |
get_symbol_metadata |
Get instrument definitions and mappings |
search_instruments |
Search for symbols with wildcards |
list_datasets |
List available Databento datasets |
list_schemas |
List available data schemas |
resolve_symbols |
Convert between symbology types |
submit_batch_job |
Submit batch data download |
list_batch_jobs |
List batch job status |
get_batch_job_files |
Get batch job download info |
cancel_batch_job |
Cancel pending batch job |
download_batch_files |
Download completed batch files |
read_dbn_file |
Parse and read DBN files |
get_dbn_metadata |
Get DBN file metadata |
write_dbn_file |
Write data to DBN format |
convert_dbn_to_parquet |
Convert DBN to Parquet |
export_to_parquet |
Query and export to Parquet |
read_parquet_file |
Read Parquet files |
get_session_info |
Get trading session info |
list_publishers |
List data publishers |
list_fields |
List schema fields |
get_dataset_range |
Get dataset date range |
list_unit_prices |
Get pricing information |
analyze_data_quality |
Analyze data quality issues |
quick_analysis |
Comprehensive symbol analysis |
get_account_status |
Server status and metrics |
get_metrics |
Performance metrics |
clear_cache |
Clear API response cache |
Configuration
| Environment Variable | Description | Default |
|---|---|---|
DATABENTO_API_KEY |
Databento API key (required) | - |
DATABENTO_DATA_DIR |
Restrict file operations to directory | Current directory |
DATABENTO_LOG_LEVEL |
Logging level (DEBUG, INFO, WARNING, ERROR) | INFO |
DATABENTO_METRICS_ENABLED |
Enable metrics collection | true |
Common Datasets
| Dataset | Description |
|---|---|
GLBX.MDP3 |
CME Globex (ES, NQ, CL futures) |
XNAS.ITCH |
Nasdaq TotalView |
XNYS.PILLAR |
NYSE |
DBEQ.BASIC |
Consolidated US equities |
OPRA.PILLAR |
US options |
IFEU.IMPACT |
ICE Futures Europe |
Common Schemas
| Schema | Description |
|---|---|
trades |
Individual trades |
ohlcv-1m |
1-minute OHLCV bars |
ohlcv-1h |
1-hour OHLCV bars |
ohlcv-1d |
Daily OHLCV bars |
mbp-1 |
Top of book |
mbp-10 |
10-level order book |
tbbo |
Top bid/offer |
definition |
Instrument definitions |
Development
# Clone repository
git clone https://github.com/deepentropy/databento-mcp.git
cd databento-mcp
# Install with dev dependencies
pip install -e ".[dev]"
# Run tests
pytest
# Format code
black src/
ruff check src/
License
Links
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。