Databento MCP

Databento MCP

A Model Context Protocol server that provides access to Databento's historical and real-time market data, including trades, OHLCV bars, and order book depth. It enables AI assistants to perform financial data analysis, manage batch jobs, and convert market data between DBN and Parquet formats.

Category
访问服务器

README

<p align="center"> <img src="https://raw.githubusercontent.com/deepentropy/databento-mcp/main/logo.svg" alt="Databento™ MCP Logo" width="100" height="100"> </p>

<h1 align="center">Databento™ MCP</h1>

<p align="center"> <strong>Model Context Protocol server for Databento™ market data</strong> </p>

<p align="center"> <a href="https://pypi.org/project/databento-mcp/"><img src="https://img.shields.io/pypi/v/databento-mcp" alt="PyPI"></a> <a href="https://pypi.org/project/databento-mcp/"><img src="https://img.shields.io/pypi/pyversions/databento-mcp" alt="Python"></a> <a href="https://github.com/deepentropy/databento-mcp/blob/main/LICENSE"><img src="https://img.shields.io/github/license/deepentropy/databento-mcp" alt="License"></a> </p>


Installation

pip install databento-mcp

Quick Start

  1. Get your API key from Databento
  2. Configure your MCP client (see setup guides below)
  3. Start querying market data through your AI assistant

Setup Guides

Claude Desktop

Add to your configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "databento": {
      "command": "databento-mcp",
      "env": {
        "DATABENTO_API_KEY": "your-api-key"
      }
    }
  }
}

GitHub Copilot CLI

Add the server to your Copilot CLI configuration:

gh copilot config set mcp-servers '{
  "databento": {
    "command": "databento-mcp",
    "env": {
      "DATABENTO_API_KEY": "your-api-key"
    }
  }
}'

Or add to your ~/.config/gh-copilot/config.yml:

mcp-servers:
  databento:
    command: databento-mcp
    env:
      DATABENTO_API_KEY: your-api-key

See GitHub Copilot CLI MCP documentation for more details.

ChatGPT (via Developer Mode)

ChatGPT supports MCP servers through Developer Mode.

  1. Enable Developer Mode in ChatGPT settings
  2. Add an MCP server with the following configuration:
{
  "name": "databento",
  "command": "databento-mcp",
  "env": {
    "DATABENTO_API_KEY": "your-api-key"
  }
}

See OpenAI Developer Mode documentation for detailed setup instructions.

Features

Historical Data

  • Retrieve trades, OHLCV bars, market depth, and more
  • Support for all Databento schemas (trades, mbp-1, mbp-10, ohlcv-*, etc.)
  • Cost estimation before query execution
  • Smart data summaries with statistics

Live Data

  • Real-time market data streaming
  • Configurable stream duration
  • Multiple schema support

File Operations

  • Read/write DBN format files
  • Export to Apache Parquet
  • Convert between formats

Batch Processing

  • Submit large-scale batch jobs
  • Monitor job status
  • Download completed files

Reference Data

  • Symbol metadata and definitions
  • Symbology resolution
  • Dataset discovery
  • Publisher information

Quality & Performance

  • Smart caching with configurable TTL
  • Data quality analysis
  • Connection pooling
  • Comprehensive metrics

Available Tools

Tool Description
health_check Check API connectivity and server status
get_historical_data Retrieve historical market data
get_live_data Stream real-time market data
get_cost Estimate query cost before execution
get_symbol_metadata Get instrument definitions and mappings
search_instruments Search for symbols with wildcards
list_datasets List available Databento datasets
list_schemas List available data schemas
resolve_symbols Convert between symbology types
submit_batch_job Submit batch data download
list_batch_jobs List batch job status
get_batch_job_files Get batch job download info
cancel_batch_job Cancel pending batch job
download_batch_files Download completed batch files
read_dbn_file Parse and read DBN files
get_dbn_metadata Get DBN file metadata
write_dbn_file Write data to DBN format
convert_dbn_to_parquet Convert DBN to Parquet
export_to_parquet Query and export to Parquet
read_parquet_file Read Parquet files
get_session_info Get trading session info
list_publishers List data publishers
list_fields List schema fields
get_dataset_range Get dataset date range
list_unit_prices Get pricing information
analyze_data_quality Analyze data quality issues
quick_analysis Comprehensive symbol analysis
get_account_status Server status and metrics
get_metrics Performance metrics
clear_cache Clear API response cache

Configuration

Environment Variable Description Default
DATABENTO_API_KEY Databento API key (required) -
DATABENTO_DATA_DIR Restrict file operations to directory Current directory
DATABENTO_LOG_LEVEL Logging level (DEBUG, INFO, WARNING, ERROR) INFO
DATABENTO_METRICS_ENABLED Enable metrics collection true

Common Datasets

Dataset Description
GLBX.MDP3 CME Globex (ES, NQ, CL futures)
XNAS.ITCH Nasdaq TotalView
XNYS.PILLAR NYSE
DBEQ.BASIC Consolidated US equities
OPRA.PILLAR US options
IFEU.IMPACT ICE Futures Europe

Common Schemas

Schema Description
trades Individual trades
ohlcv-1m 1-minute OHLCV bars
ohlcv-1h 1-hour OHLCV bars
ohlcv-1d Daily OHLCV bars
mbp-1 Top of book
mbp-10 10-level order book
tbbo Top bid/offer
definition Instrument definitions

Development

# Clone repository
git clone https://github.com/deepentropy/databento-mcp.git
cd databento-mcp

# Install with dev dependencies
pip install -e ".[dev]"

# Run tests
pytest

# Format code
black src/
ruff check src/

License

MIT License

Links

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选