Databricks MCP Server
Enables interaction with Databricks workspaces using On-Behalf-Of authentication to test connectivity, retrieve user information, and perform operations on behalf of authenticated users.
README
Custom MCP Server for Databricks
Custom Model Context Protocol (MCP) server with OBO (On-Behalf-Of) authentication, designed for deployment as a Databricks app.
Features
The server implements three MCP tools:
- test_connection: Test server connectivity and OBO authentication status
- echo: Echo back a message (useful for testing basic functionality)
- get_user_info: Retrieve current user information via OBO authentication
Authentication
This server uses Databricks OBO (On-Behalf-Of) authentication with ModelServingUserCredentials, allowing it to act on behalf of the authenticated user making requests.
Deployment to Databricks
Prerequisites
- Install Databricks CLI
- Authenticate to your workspace:
databricks auth login --host https://<your-workspace-hostname>
Deploy Steps
-
Create the Databricks app:
databricks apps create mcp-cust-kat -
Upload and deploy:
DATABRICKS_USERNAME=$(databricks current-user me | jq -r .userName) databricks sync . "/Users/$DATABRICKS_USERNAME/mcp-cust-kat" databricks apps deploy mcp-cust-kat --source-code-path "/Workspace/Users/$DATABRICKS_USERNAME/mcp-cust-kat" -
Access your app:
- The app URL will be available in the Databricks UI
- MCP endpoint:
https://<app-url>/mcp - Health check:
https://<app-url>/health
API Endpoints
- GET / - Root endpoint with server information
- GET /health - Health check endpoint with OBO authentication status
- POST /mcp - Main MCP JSON-RPC endpoint
Testing the Server
Once deployed, you can test the connection using the available MCP tools:
- test_connection: Verifies the server is running and shows OBO authentication status
- echo: Simple echo test to verify request/response functionality
- get_user_info: Returns detailed information about the authenticated user
Local Development
Run locally for testing:
uv run python server.py
The server will start on port 8000 with both HTTP and MCP protocol support.
Project Structure
server.py- Main FastAPI application with MCP protocol implementationapp.yaml- Databricks app configurationpyproject.toml- Python project configuration and dependenciesrequirements.txt- Direct dependencies for the application
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。