Databricks MCP Server

Databricks MCP Server

A Model Context Protocol server that enables AI assistants to interact with Databricks workspaces, allowing them to browse Unity Catalog, query metadata, sample data, and execute SQL queries.

Category
访问服务器

README

Databricks MCP Server

A Model Context Protocol (MCP) server that provides seamless integration with Databricks Unity Catalog. This server enables AI assistants to interact with your Databricks workspace, query metadata, sample data, and perform various Unity Catalog operations.

Features

  • Unity Catalog Integration: Browse catalogs, schemas, and tables
  • Metadata Querying: Get detailed information about tables, columns, and properties
  • Data Sampling: Sample data from tables for analysis
  • SQL Query Execution: Run SQL queries against your Databricks warehouses
  • Table Search: Search for tables by name or metadata
  • Data Discovery: Advanced search and filtering capabilities
  • Data Quality Insights: Basic data quality analysis
  • Lineage Information: Table lineage tracking (when available)

Installation

Prerequisites

  • Python 3.8 or higher
  • Databricks workspace access
  • Databricks personal access token

Install from Source

git clone <repository-url>
cd databricks-mcp-server
pip install -e .

Install Development Dependencies

pip install -e ".[dev]"

Configuration

Environment Variables

Set the following environment variables:

export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_TOKEN="your-personal-access-token"
export DATABRICKS_WAREHOUSE_ID="your-warehouse-id"  # Optional but recommended
export LOG_LEVEL="INFO"  # Optional

Configuration File

Alternatively, create a config.json file:

{
  "databricks_host": "https://your-workspace.cloud.databricks.com",
  "databricks_token": "your-personal-access-token", 
  "databricks_warehouse_id": "your-warehouse-id",
  "log_level": "INFO"
}

Usage

Running the Server

# Run directly
python -m databricks_mcp_server.server

# Or use the installed command
databricks-mcp-server

MCP Client Integration

The server implements the Model Context Protocol and can be used with any MCP-compatible client. Here's an example configuration for Claude Desktop:

{
  "mcpServers": {
    "databricks": {
      "command": "databricks-mcp-server",
      "env": {
        "DATABRICKS_HOST": "https://your-workspace.cloud.databricks.com",
        "DATABRICKS_TOKEN": "your-token"
      }
    }
  }
}

Available Tools

Catalog Operations

  • list_catalogs: List all Unity Catalog catalogs
  • list_schemas: List schemas in a catalog
  • list_tables: List tables in a schema

Table Operations

  • describe_table: Get detailed table information including columns and metadata
  • sample_table: Sample data from a table (configurable limit)
  • search_tables: Search for tables by name or metadata

Query Operations

  • execute_query: Execute SQL queries against Databricks warehouses
  • get_table_lineage: Get lineage information for tables

Resources

The server exposes Databricks resources through URIs:

  • databricks://catalog/{catalog_name}: Catalog information
  • databricks://catalog/{catalog_name}/{schema_name}: Schema information
  • databricks://catalog/{catalog_name}/{schema_name}/{table_name}: Table information

Examples

Basic Usage

from databricks_mcp_server import DatabricksClient

# Initialize client
client = await DatabricksClient.create()

# List catalogs
catalogs = await client.list_catalogs()
print(f"Found {len(catalogs)} catalogs")

# Get table info
table_info = await client.describe_table("main", "default", "my_table")
print(f"Table has {len(table_info.columns)} columns")

# Sample data
sample = await client.sample_table("main", "default", "my_table", limit=5)
print(f"Sampled {sample.row_count} rows")

Advanced Data Discovery

from databricks_mcp_server import UnityCatalogManager

# Initialize manager
manager = UnityCatalogManager(client)

# Discover tables with patterns
results = await manager.discover_data(
    search_patterns=["customer", "user"],
    catalogs=["main", "analytics"],
    include_metadata=True
)

print(f"Found {results.total_tables} matching tables")

Development

Running Tests

pytest

Code Formatting

black src/ tests/
isort src/ tests/

Type Checking

mypy src/

Troubleshooting

Common Issues

  1. Authentication Error: Verify your DATABRICKS_TOKEN is valid and has appropriate permissions
  2. Connection Error: Check that DATABRICKS_HOST is correct and accessible
  3. No Warehouses: Ensure you have at least one SQL warehouse running in your workspace

Debugging

Enable debug logging:

export LOG_LEVEL=DEBUG
databricks-mcp-server

Configuration Validation

Use the built-in validation:

from databricks_mcp_server.utils import validate_databricks_config

validation = validate_databricks_config()
if not validation["valid"]:
    print("Configuration errors:", validation["errors"])

Security Considerations

  • Never commit access tokens to version control
  • Use environment variables or secure configuration management
  • Limit token permissions to minimum required scope
  • Consider using service principals for production deployments

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Run the test suite
  6. Submit a pull request

License

MIT License - see LICENSE file for details.

Support

For issues and questions:

  1. Check the troubleshooting section
  2. Search existing issues
  3. Create a new issue with detailed information

Changelog

v0.1.0

  • Initial release
  • Basic Unity Catalog integration
  • Table metadata and sampling
  • SQL query execution
  • MCP server implementation

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选