
Databricks MCP Server
A Model Context Protocol server that enables AI assistants to interact with Databricks workspaces, allowing them to browse Unity Catalog, query metadata, sample data, and execute SQL queries.
README
Databricks MCP Server
A Model Context Protocol (MCP) server that provides seamless integration with Databricks Unity Catalog. This server enables AI assistants to interact with your Databricks workspace, query metadata, sample data, and perform various Unity Catalog operations.
Features
- Unity Catalog Integration: Browse catalogs, schemas, and tables
- Metadata Querying: Get detailed information about tables, columns, and properties
- Data Sampling: Sample data from tables for analysis
- SQL Query Execution: Run SQL queries against your Databricks warehouses
- Table Search: Search for tables by name or metadata
- Data Discovery: Advanced search and filtering capabilities
- Data Quality Insights: Basic data quality analysis
- Lineage Information: Table lineage tracking (when available)
Installation
Prerequisites
- Python 3.8 or higher
- Databricks workspace access
- Databricks personal access token
Install from Source
git clone <repository-url>
cd databricks-mcp-server
pip install -e .
Install Development Dependencies
pip install -e ".[dev]"
Configuration
Environment Variables
Set the following environment variables:
export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_TOKEN="your-personal-access-token"
export DATABRICKS_WAREHOUSE_ID="your-warehouse-id" # Optional but recommended
export LOG_LEVEL="INFO" # Optional
Configuration File
Alternatively, create a config.json
file:
{
"databricks_host": "https://your-workspace.cloud.databricks.com",
"databricks_token": "your-personal-access-token",
"databricks_warehouse_id": "your-warehouse-id",
"log_level": "INFO"
}
Usage
Running the Server
# Run directly
python -m databricks_mcp_server.server
# Or use the installed command
databricks-mcp-server
MCP Client Integration
The server implements the Model Context Protocol and can be used with any MCP-compatible client. Here's an example configuration for Claude Desktop:
{
"mcpServers": {
"databricks": {
"command": "databricks-mcp-server",
"env": {
"DATABRICKS_HOST": "https://your-workspace.cloud.databricks.com",
"DATABRICKS_TOKEN": "your-token"
}
}
}
}
Available Tools
Catalog Operations
list_catalogs
: List all Unity Catalog catalogslist_schemas
: List schemas in a cataloglist_tables
: List tables in a schema
Table Operations
describe_table
: Get detailed table information including columns and metadatasample_table
: Sample data from a table (configurable limit)search_tables
: Search for tables by name or metadata
Query Operations
execute_query
: Execute SQL queries against Databricks warehousesget_table_lineage
: Get lineage information for tables
Resources
The server exposes Databricks resources through URIs:
databricks://catalog/{catalog_name}
: Catalog informationdatabricks://catalog/{catalog_name}/{schema_name}
: Schema informationdatabricks://catalog/{catalog_name}/{schema_name}/{table_name}
: Table information
Examples
Basic Usage
from databricks_mcp_server import DatabricksClient
# Initialize client
client = await DatabricksClient.create()
# List catalogs
catalogs = await client.list_catalogs()
print(f"Found {len(catalogs)} catalogs")
# Get table info
table_info = await client.describe_table("main", "default", "my_table")
print(f"Table has {len(table_info.columns)} columns")
# Sample data
sample = await client.sample_table("main", "default", "my_table", limit=5)
print(f"Sampled {sample.row_count} rows")
Advanced Data Discovery
from databricks_mcp_server import UnityCatalogManager
# Initialize manager
manager = UnityCatalogManager(client)
# Discover tables with patterns
results = await manager.discover_data(
search_patterns=["customer", "user"],
catalogs=["main", "analytics"],
include_metadata=True
)
print(f"Found {results.total_tables} matching tables")
Development
Running Tests
pytest
Code Formatting
black src/ tests/
isort src/ tests/
Type Checking
mypy src/
Troubleshooting
Common Issues
- Authentication Error: Verify your
DATABRICKS_TOKEN
is valid and has appropriate permissions - Connection Error: Check that
DATABRICKS_HOST
is correct and accessible - No Warehouses: Ensure you have at least one SQL warehouse running in your workspace
Debugging
Enable debug logging:
export LOG_LEVEL=DEBUG
databricks-mcp-server
Configuration Validation
Use the built-in validation:
from databricks_mcp_server.utils import validate_databricks_config
validation = validate_databricks_config()
if not validation["valid"]:
print("Configuration errors:", validation["errors"])
Security Considerations
- Never commit access tokens to version control
- Use environment variables or secure configuration management
- Limit token permissions to minimum required scope
- Consider using service principals for production deployments
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Run the test suite
- Submit a pull request
License
MIT License - see LICENSE file for details.
Support
For issues and questions:
- Check the troubleshooting section
- Search existing issues
- Create a new issue with detailed information
Changelog
v0.1.0
- Initial release
- Basic Unity Catalog integration
- Table metadata and sampling
- SQL query execution
- MCP server implementation
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。