DataDog MCP Server

DataDog MCP Server

Enables AI assistants to interact with DataDog's observability platform through a standardized interface. Supports monitoring infrastructure, managing events, analyzing logs and metrics, and automating operations like alerts and downtimes.

Category
访问服务器

README

DataDog MCP Server

A Model Context Protocol (MCP) server that provides AI assistants with direct access to DataDog's observability platform through a standardized interface.

🎯 Purpose

This server bridges the gap between Large Language Models (LLMs) and DataDog's comprehensive observability platform, enabling AI assistants to:

  • Monitor Infrastructure: Query dashboards, metrics, and host status
  • Manage Events: Create and retrieve events for incident tracking
  • Analyze Data: Access logs, traces, and performance metrics
  • Automate Operations: Interact with monitors, downtimes, and alerts

🔧 What is MCP?

The Model Context Protocol (MCP) is a standardized way for AI assistants to interact with external tools and data sources. Instead of each AI system building custom integrations, MCP provides a common interface that allows LLMs to:

  • Execute tools with structured inputs and outputs
  • Access real-time data from external systems
  • Maintain context across multiple tool calls
  • Provide consistent, reliable integrations

📊 DataDog Platform

DataDog is a leading observability platform that provides:

  • Infrastructure Monitoring: Track server performance, resource usage, and health
  • Application Performance Monitoring (APM): Monitor application performance and user experience
  • Log Management: Centralized logging with powerful search and analysis
  • Real User Monitoring (RUM): Track user interactions and frontend performance
  • Security Monitoring: Detect threats and vulnerabilities across your infrastructure

🚀 Quick Start

  1. Build the server:

    make build
    
  2. Configure DataDog API:

    export DD_API_KEY="your-datadog-api-key"
    export DATADOG_APP_KEY="your-datadog-app-key"  # Optional
    export DATADOG_SITE="datadoghq.eu"  # or datadoghq.com
    
  3. Generate MCP configuration:

    make create-mcp-config
    
  4. Run the server:

    ./build/datadog-mcp-server
    

📚 Documentation

🛠️ Available Tools

Currently implemented tools include:

  • Dashboard Management (v1): v1_list_dashboards, v1_get_dashboard
  • Event Management (v1): v1_list_events, v1_create_event
  • Connection Testing (v1): v1_test_connection
  • Monitor Management (v1): (Coming soon)
  • Metrics & Logs (v1): (Coming soon)

All tools are prefixed with their API version (e.g., v1_, v2_) for clear segregation and future v2 API support.

See docs/tools.md for the complete list and implementation status.

🔧 Development

# Install development tools
make install-dev-tools

# Run tests
make test

# Generate API client
make generate

# Split OpenAPI specifications
make split

# Lint OpenAPI specifications
make lint-openapi

# Build and test
make build

OpenAPI Management

The project includes comprehensive tools for managing OpenAPI specifications:

  • Split Specifications: Break down large OpenAPI files into smaller, manageable pieces
  • Spectral Linting: Validate OpenAPI specifications with custom rules and best practices
  • Code Generation: Generate Go client code from OpenAPI specifications
  • Version Support: Separate handling for DataDog API v1 and v2

See OpenAPI Splitting Guide and Spectral Linting Guide for detailed usage.

📚 Resources

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选
mcp-server-qdrant

mcp-server-qdrant

这个仓库展示了如何为向量搜索引擎 Qdrant 创建一个 MCP (Managed Control Plane) 服务器的示例。

官方
精选
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选