DataDog MCP Server
Enables AI assistants to interact with DataDog's observability platform through a standardized interface. Supports monitoring infrastructure, managing events, analyzing logs and metrics, and automating operations like alerts and downtimes.
README
DataDog MCP Server
A Model Context Protocol (MCP) server that provides AI assistants with direct access to DataDog's observability platform through a standardized interface.
🎯 Purpose
This server bridges the gap between Large Language Models (LLMs) and DataDog's comprehensive observability platform, enabling AI assistants to:
- Monitor Infrastructure: Query dashboards, metrics, and host status
- Manage Events: Create and retrieve events for incident tracking
- Analyze Data: Access logs, traces, and performance metrics
- Automate Operations: Interact with monitors, downtimes, and alerts
🔧 What is MCP?
The Model Context Protocol (MCP) is a standardized way for AI assistants to interact with external tools and data sources. Instead of each AI system building custom integrations, MCP provides a common interface that allows LLMs to:
- Execute tools with structured inputs and outputs
- Access real-time data from external systems
- Maintain context across multiple tool calls
- Provide consistent, reliable integrations
📊 DataDog Platform
DataDog is a leading observability platform that provides:
- Infrastructure Monitoring: Track server performance, resource usage, and health
- Application Performance Monitoring (APM): Monitor application performance and user experience
- Log Management: Centralized logging with powerful search and analysis
- Real User Monitoring (RUM): Track user interactions and frontend performance
- Security Monitoring: Detect threats and vulnerabilities across your infrastructure
🚀 Quick Start
-
Build the server:
make build -
Configure DataDog API:
export DD_API_KEY="your-datadog-api-key" export DATADOG_APP_KEY="your-datadog-app-key" # Optional export DATADOG_SITE="datadoghq.eu" # or datadoghq.com -
Generate MCP configuration:
make create-mcp-config -
Run the server:
./build/datadog-mcp-server
📚 Documentation
- Available Tools - Complete list of implementable DataDog tools
- Test Documentation - Test coverage and implementation details
- OpenAPI Splitting - How to split large OpenAPI specifications
- Spectral Linting - OpenAPI specification validation and linting
🛠️ Available Tools
Currently implemented tools include:
- Dashboard Management (v1):
v1_list_dashboards,v1_get_dashboard - Event Management (v1):
v1_list_events,v1_create_event - Connection Testing (v1):
v1_test_connection - Monitor Management (v1): (Coming soon)
- Metrics & Logs (v1): (Coming soon)
All tools are prefixed with their API version (e.g., v1_, v2_) for clear segregation and future v2 API support.
See docs/tools.md for the complete list and implementation status.
🔧 Development
# Install development tools
make install-dev-tools
# Run tests
make test
# Generate API client
make generate
# Split OpenAPI specifications
make split
# Lint OpenAPI specifications
make lint-openapi
# Build and test
make build
OpenAPI Management
The project includes comprehensive tools for managing OpenAPI specifications:
- Split Specifications: Break down large OpenAPI files into smaller, manageable pieces
- Spectral Linting: Validate OpenAPI specifications with custom rules and best practices
- Code Generation: Generate Go client code from OpenAPI specifications
- Version Support: Separate handling for DataDog API v1 and v2
See OpenAPI Splitting Guide and Spectral Linting Guide for detailed usage.
📚 Resources
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。