DataMaker MCP Server

DataMaker MCP Server

Enables AI models to generate synthetic data, manage templates and connections, push data to destinations, and execute Python scripts using DataMaker's data generation platform. Automatically handles large datasets by storing them to S3 with secure access links.

Category
访问服务器

README

DataMaker MCP Server

The Automators DataMaker MCP (Model Context Protocol) server provides a seamless integration between DataMaker and the Model Context Protocol, enabling AI models to interact with DataMaker's powerful data generation capabilities.

🚀 Features

  • Generate synthetic data using DataMaker templates
  • Fetch and manage DataMaker templates
  • Fetch and manage DataMaker connections
  • Push data to DataMaker connections
  • Large dataset handling: Automatically stores large endpoint datasets to S3 and provides summary with view links
  • Execute Python scripts: Dynamically execute Python code by saving scripts to S3 and running them using the DataMaker runner

📦 Installation

Add the following to your mcp.json file:

{
  "mcpServers": {
    "datamaker": {
      "command": "npx",
      "args": ["-y", "@automators/datamaker-mcp"],
      "env": {
        "DATAMAKER_API_KEY": "your-datamaker-api-key"
      }
    }
  }
}

📋 Prerequisites

  • Node.js (LTS version recommended)
  • pnpm package manager (v10.5.2 or later)
  • A DataMaker account with API access
  • AWS S3 bucket and credentials (for large dataset storage)

🏃‍♂️ Usage

Large Dataset Handling

The get_endpoints tool automatically detects when a large dataset is returned (more than 10 endpoints) and:

  1. Stores the complete dataset to your configured S3 bucket
  2. Returns a summary showing only the first 5 endpoints
  3. Provides a secure link to view the complete dataset (expires in 24 hours)

This prevents overwhelming responses while maintaining access to all data.

Python Script Execution

The execute_python_script tool allows you to dynamically execute Python code:

  1. Saves the script to S3 using the /upload-text endpoint
  2. Executes the script using the DataMaker runner via the /execute-python endpoint
  3. Returns the execution output once the script completes

Usage Example:

# The tool accepts Python script code and a filename
execute_python_script(
  script="print('Hello from DataMaker!')",
  filename="hello.py"
)

This enables AI models to write and execute custom Python scripts for data processing, transformation, or any other computational tasks within the DataMaker environment.

Development Mode

Create a .env file in your project root. You can copy from env.example:

cp env.example .env

Then edit .env with your actual values:

DATAMAKER_URL="https://dev.datamaker.app"
DATAMAKER_API_KEY="your-datamaker-api-key"

# S3 Configuration (optional, for large dataset storage)
S3_BUCKET="your-s3-bucket-name"
S3_REGION="us-east-1"
S3_ACCESS_KEY_ID="your-aws-access-key"
S3_SECRET_ACCESS_KEY="your-aws-secret-key"

Run the server with the MCP Inspector for debugging:

pnpm dev

This will start the MCP server and launch the MCP Inspector interface at http://localhost:5173.

🔧 Available Scripts

  • pnpm build - Build the TypeScript code
  • pnpm dev - Start the development server with MCP Inspector
  • pnpm changeset - Create a new changeset
  • pnpm version - Update versions and changelogs
  • pnpm release - Build and publish the package

🚢 Release Process

This project uses Changesets to manage versions, create changelogs, and publish to npm. Here's how to make a change:

  1. Create a new branch
  2. Make your changes
  3. Create a changeset:
    pnpm changeset
    
  4. Follow the prompts to describe your changes
  5. Commit the changeset file along with your changes
  6. Push to your branch
  7. Create a PR on GitHub

The GitHub Actions workflow will automatically:

  • Create a PR with version updates and changelog
  • Publish to npm when the PR is merged

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

📄 License

MIT License - See LICENSE for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选