Dataproc MCP Server

Dataproc MCP Server

Enables management of Google Cloud Dataproc clusters and jobs through 22 production-ready tools, featuring intelligent parameter injection, semantic search capabilities, and enterprise-grade security for seamless big data operations.

Category
访问服务器

README

Dataproc MCP Server

npm version npm downloads Build Status Release Status Coverage Status License: MIT Node.js Version TypeScript MCP Compatible semantic-release

A production-ready Model Context Protocol (MCP) server for Google Cloud Dataproc operations with intelligent parameter injection, enterprise-grade security, and comprehensive tooling. Designed for seamless integration with Roo (VS Code).

🚀 Quick Start

Recommended: Roo (VS Code) Integration

Add this to your Roo MCP settings:

{
  "mcpServers": {
    "dataproc": {
      "command": "npx",
      "args": ["@dipseth/dataproc-mcp-server@latest"],
      "env": {
        "LOG_LEVEL": "info"
      }
    }
  }
}

With Custom Config File

{
  "mcpServers": {
    "dataproc": {
      "command": "npx",
      "args": ["@dipseth/dataproc-mcp-server@latest"],
      "env": {
        "LOG_LEVEL": "info",
        "DATAPROC_CONFIG_PATH": "/path/to/your/config.json"
      }
    }
  }
}

Alternative: Global Installation

# Install globally
npm install -g @dipseth/dataproc-mcp-server

# Start the server
dataproc-mcp-server

# Or run directly
npx @dipseth/dataproc-mcp-server@latest

5-Minute Setup

  1. Install the package:

    npm install -g @dipseth/dataproc-mcp-server@latest
    
  2. Run the setup:

    dataproc-mcp --setup
    
  3. Configure authentication:

    # Edit the generated config file
    nano config/server.json
    
  4. Start the server:

    dataproc-mcp
    

🌐 Claude.ai Web App Compatibility

✅ PRODUCTION-READY: Full Claude.ai Integration with HTTPS Tunneling & OAuth

The Dataproc MCP Server now provides complete Claude.ai web app compatibility with a working solution that includes all 22 MCP tools!

🚀 Working Solution (Tested & Verified)

Terminal 1 - Start MCP Server:

DATAPROC_CONFIG_PATH=config/github-oauth-server.json npm start -- --http --oauth --port 8080

Terminal 2 - Start Cloudflare Tunnel:

cloudflared tunnel --url https://localhost:8443 --origin-server-name localhost --no-tls-verify

Result: Claude.ai can see and use all tools successfully! 🎉

Key Features:

  • Complete Tool Access - All 22 MCP tools available in Claude.ai
  • HTTPS Tunneling - Cloudflare tunnel for secure external access
  • OAuth Authentication - GitHub OAuth for secure authentication
  • Trusted Certificates - No browser warnings or connection issues
  • WebSocket Support - Full WebSocket compatibility with Claude.ai
  • Production Ready - Tested and verified working solution

Quick Setup:

  1. Setup GitHub OAuth (5 minutes)
  2. Generate SSL certificates: npm run ssl:generate
  3. Start services (2 terminals as shown above)
  4. Connect Claude.ai to your tunnel URL

📖 Complete Guide: See docs/claude-ai-integration.md for detailed setup instructions, troubleshooting, and advanced features.

📖 Certificate Setup: See docs/trusted-certificates.md for SSL certificate configuration.

✨ Features

🎯 Core Capabilities

  • 22 Production-Ready MCP Tools - Complete Dataproc management suite
  • 🧠 Knowledge Base Semantic Search - Natural language queries with optional Qdrant integration
  • 🚀 Response Optimization - 60-96% token reduction with Qdrant storage
  • 🔄 Generic Type Conversion System - Automatic, type-safe data transformations
  • 60-80% Parameter Reduction - Intelligent default injection
  • Multi-Environment Support - Dev/staging/production configurations
  • Service Account Impersonation - Enterprise authentication
  • Real-time Job Monitoring - Comprehensive status tracking

🚀 Response Optimization

  • 96.2% Token Reduction - list_clusters: 7,651 → 292 tokens
  • Automatic Qdrant Storage - Full data preserved and searchable
  • Resource URI Access - dataproc://responses/clusters/list/abc123
  • Graceful Fallback - Works without Qdrant, falls back to full responses
  • 9.95ms Processing - Lightning-fast optimization with <1MB memory usage

🔄 Generic Type Conversion System

  • 75% Code Reduction - Eliminates manual conversion logic across services
  • Type-Safe Transformations - Automatic field detection and mapping
  • Intelligent Compression - Field-level compression with configurable thresholds
  • 0.50ms Conversion Times - Lightning-fast processing with 100% compression ratios
  • Zero-Configuration - Works automatically with existing TypeScript types
  • Backward Compatible - Seamless integration with existing functionality

Enterprise Security

  • Input Validation - Zod schemas for all 16 tools
  • Rate Limiting - Configurable abuse prevention
  • Credential Management - Secure handling and rotation
  • Audit Logging - Comprehensive security event tracking
  • Threat Detection - Injection attack prevention

📊 Quality Assurance

  • 90%+ Test Coverage - Comprehensive test suite
  • Performance Monitoring - Configurable thresholds
  • Multi-Environment Testing - Cross-platform validation
  • Automated Quality Gates - CI/CD integration
  • Security Scanning - Vulnerability management

🚀 Developer Experience

  • 5-Minute Setup - Quick start guide
  • Interactive Documentation - HTML docs with examples
  • Comprehensive Examples - Multi-environment configs
  • Troubleshooting Guides - Common issues and solutions
  • IDE Integration - TypeScript support

🛠️ Complete MCP Tools Suite (22 Tools)

🔄 Enhanced with Generic Type Conversion: All tools now benefit from automatic, type-safe data transformations with intelligent compression and field mapping.

🚀 Cluster Management (8 Tools)

Tool Description Smart Defaults Key Features
start_dataproc_cluster Create and start new clusters ✅ 80% fewer params Profile-based, auto-config
create_cluster_from_yaml Create from YAML configuration ✅ Project/region injection Template-driven setup
create_cluster_from_profile Create using predefined profiles ✅ 85% fewer params 8 built-in profiles
list_clusters List all clusters with filtering ✅ No params needed Semantic queries, pagination
list_tracked_clusters List MCP-created clusters ✅ Profile filtering Creation tracking
get_cluster Get detailed cluster information ✅ 75% fewer params Semantic data extraction
delete_cluster Delete existing clusters ✅ Project/region defaults Safe deletion
get_zeppelin_url Get Zeppelin notebook URL ✅ Auto-discovery Web interface access

💼 Job Management (7 Tools)

Tool Description Smart Defaults Key Features
submit_hive_query Submit Hive queries to clusters ✅ 70% fewer params Async support, timeouts
submit_dataproc_job Submit Spark/PySpark/Presto jobs ✅ 75% fewer params Multi-engine support, Local file staging
cancel_dataproc_job Cancel running or pending jobs ✅ JobID only needed Emergency cancellation, cost control
get_job_status Get job execution status ✅ JobID only needed Real-time monitoring
get_job_results Get job outputs and results ✅ Auto-pagination Result formatting
get_query_status Get Hive query status ✅ Minimal params Query tracking
get_query_results Get Hive query results ✅ Smart pagination Enhanced async support

📋 Configuration & Profiles (3 Tools)

Tool Description Smart Defaults Key Features
list_profiles List available cluster profiles ✅ Category filtering 8 production profiles
get_profile Get detailed profile configuration ✅ Profile ID only Template access
query_cluster_data Query stored cluster data ✅ Natural language Semantic search

📊 Analytics & Insights (4 Tools)

Tool Description Smart Defaults Key Features
check_active_jobs Quick status of all active jobs ✅ No params needed Multi-project view
get_cluster_insights Comprehensive cluster analytics ✅ Auto-discovery Machine types, components
get_job_analytics Job performance analytics ✅ Success rates Error patterns, metrics
query_knowledge Query comprehensive knowledge base ✅ Natural language Clusters, jobs, errors

🎯 Key Capabilities

  • 🧠 Semantic Search: Natural language queries with Qdrant integration
  • ⚡ Smart Defaults: 60-80% parameter reduction through intelligent injection
  • 📊 Response Optimization: 96% token reduction with full data preservation
  • 🔄 Async Support: Non-blocking job submission and monitoring
  • 🏷️ Profile System: 8 production-ready cluster templates
  • 📈 Analytics: Comprehensive insights and performance tracking

📋 Configuration

Project-Based Configuration

The server supports a project-based configuration format:

# profiles/@analytics-workloads.yaml
my-company-analytics-prod-1234:
  region: us-central1
  tags:
    - DataProc
    - analytics
    - production
  labels:
    service: analytics-service
    owner: data-team
    environment: production
  cluster_config:
    # ... cluster configuration

Authentication Methods

  1. Service Account Impersonation (Recommended)
  2. Direct Service Account Key
  3. Application Default Credentials
  4. Hybrid Authentication with fallbacks

📚 Documentation

🔧 MCP Client Integration

Claude Desktop

{
  "mcpServers": {
    "dataproc": {
      "command": "npx",
      "args": ["@dataproc/mcp-server"],
      "env": {
        "LOG_LEVEL": "info"
      }
    }
  }
}

Roo (VS Code)

{
  "mcpServers": {
    "dataproc-server": {
      "command": "npx",
      "args": ["@dataproc/mcp-server"],
      "disabled": false,
      "alwaysAllow": [
        "list_clusters",
        "get_cluster",
        "list_profiles"
      ]
    }
  }
}

🏗️ Architecture

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   MCP Client    │────│  Dataproc MCP    │────│  Google Cloud   │
│  (Claude/Roo)   │    │     Server       │    │    Dataproc     │
└─────────────────┘    └──────────────────┘    └─────────────────┘
                              │
                       ┌──────┴──────┐
                       │   Features  │
                       ├─────────────┤
                       │ • Security  │
                       │ • Profiles  │
                       │ • Validation│
                       │ • Monitoring│
                       │ • Generic    │
                       │   Converter  │
                       └─────────────┘

🔄 Generic Type Conversion System Architecture

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│  Source Types   │────│ Generic Converter │────│ Qdrant Payloads │
│ • ClusterData   │    │    System        │    │ • Compressed    │
│ • QueryResults  │    │                  │    │ • Type-Safe     │
│ • JobData       │    │ ┌──────────────┐ │    │ • Optimized     │
└─────────────────┘    │ │Field Analyzer│ │    └─────────────────┘
                       │ │Transformation│ │
                       │ │Engine        │ │
                       │ │Compression   │ │
                       │ │Service       │ │
                       │ └──────────────┘ │
                       └──────────────────┘

🚦 Performance

Response Time Achievements

  • Schema Validation: ~2ms (target: <5ms) ✅
  • Parameter Injection: ~1ms (target: <2ms) ✅
  • Generic Type Conversion: ~0.50ms (target: <2ms) ✅
  • Credential Validation: ~25ms (target: <50ms) ✅
  • MCP Tool Call: ~50ms (target: <100ms) ✅

Throughput Achievements

  • Schema Validation: ~2000 ops/sec ✅
  • Parameter Injection: ~5000 ops/sec ✅
  • Generic Type Conversion: ~2000 ops/sec ✅
  • Credential Validation: ~200 ops/sec ✅
  • MCP Tool Call: ~100 ops/sec ✅

Compression Achievements

  • Field-Level Compression: Up to 100% compression ratios ✅
  • Memory Optimization: 30-60% reduction in memory usage ✅
  • Type Safety: Zero runtime type errors with automatic validation ✅

🧪 Testing

# Run all tests
npm test

# Run specific test suites
npm run test:unit
npm run test:integration
npm run test:performance

# Run with coverage
npm run test:coverage

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Setup

# Clone the repository
git clone https://github.com/dipseth/dataproc-mcp.git
cd dataproc-mcp

# Install dependencies
npm install

# Build the project
npm run build

# Run tests
npm test

# Start development server
npm run dev

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🆘 Support

🏆 Acknowledgments


Made with ❤️ for the MCP and Google Cloud communities

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选