DBT Manifest MCP Server
Enables the analysis of DBT manifests with automatic schema version detection and lineage tracking, allowing users to query model dependencies, access compiled code, and get detailed model information.
README
DBT Manifest MCP Server
A FastMCP server for analyzing DBT manifests with automatic schema version detection and lineage tracking.
Author: David B Company: DABBLEFISH LLC License: MIT
Features
- Automatic Schema Version Detection: Supports DBT manifest schema versions v0-v12
- Version-Adaptive Parsing: Backward compatibility with legacy manifest formats
- SQLite Database Storage: Efficient querying and data persistence
- Lineage Analysis: Upstream and downstream dependency tracking
- Model Information: Detailed model metadata and compiled code access
- PEP-8 Compliant: Professional Python package structure
Installation
From PyPI (when published)
pip install dbt-manifest-mcp
From Source
git clone https://github.com/dabblefish/dbt-manifest-mcp.git
cd dbt-manifest-mcp
pip install -e .
Development Installation
git clone https://github.com/dabblefish/dbt-manifest-mcp.git
cd dbt-manifest-mcp
pip install -e ".[dev]"
Usage
Running the Server
# Using the installed command
dbt-manifest-mcp
# Or using Python module
python -m dbt_manifest_mcp.server
Environment Variables
DBT_MANIFEST_PATH: Path to the DBT manifest.json file (required)DBT_DB_PATH: Path to SQLite database file (optional, defaults to ./dbt_manifest.db)
Example
export DBT_MANIFEST_PATH="/path/to/your/manifest.json"
export DBT_DB_PATH="./dbt_manifest.db"
dbt-manifest-mcp
Available Tools
1. refresh_manifest
Refresh DBT manifest data by parsing and storing in SQLite database.
Parameters:
manifest_path(optional): Path to the DBT manifest.json file
Returns: Success message with statistics
2. get_upstream_lineage
Get upstream lineage for a DBT model.
Parameters:
model_id: Unique ID of the DBT model (e.g., 'model.my_project.my_model')
Returns: Dictionary with model_id, upstream_models list, and count
3. get_downstream_lineage
Get downstream lineage for a DBT model.
Parameters:
model_id: Unique ID of the DBT model (e.g., 'model.my_project.my_model')
Returns: Dictionary with model_id, downstream_models list, and count
4. get_model_info
Get detailed information about a DBT model including parent/child counts and compiled code.
Parameters:
model_id: Unique ID of the DBT model (e.g., 'model.my_project.my_model')
Returns: Dictionary with detailed model information
5. get_schema_info
Get information about the loaded DBT manifest schema version, supported features, and database statistics.
Returns: Dictionary with version info, features, and statistics
Schema Version Support
The server automatically detects and adapts to different DBT manifest schema versions:
- v0-v3: Legacy format with basic node structure
- v4+: Modern format with parent_map and child_map
- v12: Latest format with enhanced metadata
Version-Specific Features
| Version | Parent Map | Child Map | Node Structure | Metadata Location |
|---|---|---|---|---|
| v0-v3 | ❌ (built from dependencies) | ❌ (built from dependencies) | Legacy | Root |
| v4-v11 | ✅ | ✅ | Modern | Metadata |
| v12 | ✅ | ✅ | Modern | Metadata |
Database Schema
The server creates the following SQLite tables:
metadata: Schema version and manifest metadatanodes: DBT models, tests, and other nodessources: DBT source definitionsmacros: DBT macro definitionsparent_map: Parent-child relationshipschild_map: Child-parent relationships
Example Usage
# After starting the server, you can use the tools via MCP client
# Refresh manifest data
refresh_manifest("/path/to/manifest.json")
# Get upstream dependencies
upstream = get_upstream_lineage("model.my_project.customer_orders")
# Get downstream dependencies
downstream = get_downstream_lineage("model.my_project.raw_customers")
# Get detailed model information
model_info = get_model_info("model.my_project.customer_summary")
# Get schema version information
schema_info = get_schema_info()
Error Handling
The server includes comprehensive error handling for:
- Missing or invalid manifest files
- Unsupported schema versions
- Database connection issues
- Invalid model IDs
License
MIT License - see LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。